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Diagnostic studies of battery materials using synchrotron X-rays

= Objectives

To identify key materials properties and materials interactions that limit battery
lifetime, performance and thermal stability (related to safety issues) using
synchrotron based X-ray techniques.

= Approach

= Combined in situ X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD)
studies about charge compensation mechanisms of electrode materials during
charge-discharge.

= Combined time-resolved (TR) XRD and XAS studies about thermal decomposition
mechanism of charged cathode materials during heating (safety related issue).

- XRD: Long range structural information.
- Hard XAS: Local structural information.
= Soft XAS: Structural information about bulk and surface.
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Our approach: In situ XRD & XAS during heating of charged cathode

materials (thermal stability study)

1. Time-resolved XRD of charged
cathode materials

Image Plate
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Heating

- Average structural
information (long
range order) during
heating
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2. Hard X-ray absorption spectroscopy

of charged cathode materials

3. Soft X-ray absorption spectroscopy
of charged cathode materials

(bulk |nformat|on)

- Electronic structural
information at the
surface (~ 50A) and in
the bulk (~ 3000A) in
elemental-selective
way during heating
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(surface information)
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Charged
cathode
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= hard X-ray
(6 ~ 10 keV)

Heating

- Local structural and electronic
structural information (bulk) in
elemental-selective way during heating
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= Combination of these techniques will clearly
provide valuable information about thermal
stability of various types of cathodes materials
and help designing thermally stable and safer
cathode materials.

= Studied cathode materials: Li033NiO2

, Lig 35Nl §C0q 15Alg 050, & Lig 55N ﬁ ﬂi(HﬂilﬁN
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Experimental setup for in situ X-ray diffraction (XRD)

X18A beamline at National Synchrotron Light Source in BNL
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Examples of using in situ XRD to study the relationship between the
structural changes and electrochemical performance
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Experimental setup for in situ X-ray absorption spectroscopy (XAS)

lonization detectors
(for transmission mode)

In situ cell

Monochromatic

X-rays
Reference
metal foil
Fluorescence detector
(Diluted samples)
XAS spectrum
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X-ray absorption spectroscopy

absorption
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X-ray absorption spectroscopy : XANES and EXAFS
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- Local structural information like bond distance,
coordination number, degree of disorder
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Olivine LIMPO, (M=Fe, Mn, Co, Ni) cathode materials

4 LiFePO, as a cathode material for Li ion battery
e Olivine structure with orthorhombic unit cell (space group : Pmnb or Pnma).
* Best chemistry in terms of safety characteristics.
* Excellent power capability due to nanosize.
« However, energy is low because of low cathode voltage
(3.4 V vs. 3.8V for nickel-based layered oxide system)

A Other olivine structured compounds : LIMPO, (M=Mn, Co, and Ni)
* High operating voltages of 4.1V for Mn, 4.8V for Co, and 5.07 V for Ni.

= Poor electrochemical properties (capacity and rate capability) compared to
LiFePO,.

[ Olivine structured mixed transition metal phosphates
- e.9.) LiFe, Mn, PO, LiFe Co, PO, Li(Fe;3Mn,3Co,,5)PO,, etc.
» Better electrochemical utilization of Mn, Co than those in LIMNPO, &
LiCoPO,.
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Phase transition behaviors of olivine LIMPO, cathode materials

 Ongoing debates about the phase transition behaviors of olivine structured
LIMPO, materials during lithium extraction/insertion.

Two phase reaction Single phase reaction
_ (i.e. solid solution reaction)
FePO,  LiFePO, Li,FePO,

L No'to'e

A A Fleoe Vs
N_NoNe™N
| .

\

= |n situ XAS and XRD to study the relationship between phase
transition behaviors and introduction of 3d transition metals
(Mn, Co, Ni) in LiFePO,. BROOKARVEN
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In situ Fe K-edge XANES spectra of C-LiFePO,

O XANES (X-ray Absorption Near Edge Structure)
s C-Li,,FePO, | : Shift of K-edge position toward higher energy
% i ] = [ncrease in oxidation state
2 40r T N X000 | | |
; | | | | ] X =0.16
-g 351 1 1 ! . - x =0.32
£ i ] x=0.51 \

T, | = x =0.75 <.
>0 C/9 3 12f——x=083
I . 1 . 1 . 1 . 1 . b X =0.91
0.0 0.2 0.4 0.6 0.8 1.0 %)
x in Li__FePO, o
=
e
S
= 06 F isosbestic point!
% - Two phase reactijon
pd -
0.0 , — . . . ]
7110 7120 7130 7140
Energy / eV

Li extraction during charge

- LiFe()PO, - XLi - e 5 xFe(lPO, + (Lx)LiFe(l)PO, -
33

Brookhaven Science Associates NATIONAL LABORATO Ri'4



In situ Fe, Mn K-edge XANES spectra of C-LiFe,Mn, PO,
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. Two phase reaction!

- Two voltage plateaus of 3.6 (Fe2*/Fe®*) and 4.2 V (Mn#/Mn?*) : two phase reactions.
= Narrow intermediate region (0.4<x<0.5 in Li,_Fe,:Mn,:PO,) : single phase reaction?
& simultaneous Fe?*/Fe3* and Mn2*/Mn3* redox reactions.
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Linear combination analysis of in situ XANES spectra of C-LiFe, :Mn, PO,
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Supporting Two phase reaction at plateaus (I)&(Il)

Plateau (I) : 0.0 £x £~0.4in C-Li,,Mn, Fe, :PO, (Fe?*/Fe* redox reaction);

Plateau (Il) : ~0.5 <x < 1.0 in C-Li,,Mn, :Fe, PO, (Mn?*/Mn** redox reaction);
= LigsMngsFegsPO, = (1-y)Ligs:MngsFeqsPO, + yLip goMngsFeg sPO, + yLI* + ye- (0sys1)
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Electrochemical properties of C-LiFe,,,Mn,,Co,,Ni,,PO,

1st charge/discharge 36" charge/discharge
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- C-LiMn,,Fe,,Co,,Ni,,PO, solid solution with olivine structure.

= Three distinct voltage plateaus during charge-discharge.

Brookhaven Science Associates X, J. Wang et al, Electrochemistry Communication, 10 (2008) pp.1347. NATIONAL LABORATORY



In situ Fe, Mn, Co, Ni K-edge XANES spectra of C-LiFe,,Mn,,Co,,Ni,,,PO,
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= Three voltage plateaus at ~ 3.6, 4.2 and 4.7 V = Redox reactions of Fe?*/Fe®*, Mn2*/Mn3" and Co?*/Co?".
= \/oltage plateau over ~ 4.9V = Mostly electrolyte decomposition.
= Electronic structural changes following the lithium extraction quite well to balance the electrical neutrality.

Brookhaven Science Associates

Electrochemistry Communication, 11 (2009) 913 p.
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In situ XRD of C-LiFe,,Mn,,Co,,NI,,PO,
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= Appearance of intermediate phase (phase 2) and solid-solution regions!
= From scan 2 to 4 (15 plateau region), small changes in the XRD patterns (slow crystal structural change).
= Fast electronic structural changes (from in situ XAS) and slow bulk crystal structural changes in this system!
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Thermal runaway in Li-ion cells

= Lithium-ion batteries are safe under normal operating conditions.
= However, if overcharge protection circuitry fails, or if there is a short circuit, then
the battery temperature can increase.

- Stage 1: Room Temperature to 125°C = Onset of thermal runaway

; Anode passive films/Electrolyte reactions occur (film decomposes) - Exothermic
- Stage 2: 125 °C to 180 °C = Venting and accelerated heating (smoke)

; Oxygen release from the cathode — Highly Exothermic
- Stage 3: 180 °C and above = Explosive decomposition (flame)

- : i

Charged layered I_il_xl\/lozflammable electrolytes

Oxyge

- Oxygen release followed by
_ M * reduction of M** to M?* & M3*

BHOOKHﬂﬁEN
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Thermal stability study of charged cathode materials (Safety related issue)

= Improving the thermal stability of the electrode materials
= many approaches: doping, surface coating, cathode chemistry, and so on.

= How do we improve thermal stability of cathode materials?
= need better understanding of thermal behavior of the charged electrode !

General method to evaluate thermal stability of charged cathode materials : TG/DSC
Example

20k LiD.-{S{NiD.BcDDJSAl-}.Dﬁ}GE 201 Li0.45(Nil.-’ScDI.-‘SM"‘I.‘B}DE
-%E” 1.2M LIPF, /EC:EMC 1.2M LiPF, JEC:EMC
3
% 10F i —14600g | 10} aH, =790 Jig
TE DJ_/ 0_\—_—//\'L
= 50 1[I}D 1I50 2{I}{} Eév[] 3[I}D 3I50 400 50 1{I}0 1I5CI 2[I]0 25IO S{I}D 3I5CI 400

Temperature (°C} Temperature (°C)
I. Belharouak et al, Electrochemistry Communication, 8 (2006) 329 p.
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TR-XRD study on thermal stability of Li, ;,5NiO, with electrolyte (as a reference)

In situ time-resolved (TR) XRD of charged
cathode materials durina heating

Image Plate
Detector

Heating

- Average structural
information (long
range order) during
heating

= A good road map for the structural

changes of nickel-based cathode
materials during heating.

' Heating up to 450°C
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e — ¥ — NN
Layered structure .. e = — ==
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i, ; e 20 (A =15
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Thermal stability study of layered cathode materials (safety related issue)

General scheme for thermal decomposition path of charged layered cathode materials

mansiion - Layered LiIMO, Spinel-type LiM,O, Rocksalt MO
metal Iayer . b _
lithium .
Iayer_’m - .
—————— b
y- - - & - Oxygen -
release . °

release

When x= 0.5 (50% of SOC) in Li MO,

Li, sM(3°1)O, (layered, R-3m) = Li,sM(3%*), ,0, (disordered spinel, Fd3m) ; no oxygen loss
Liy sM(3°*), 4O, (disordered spinel, Fd3m) = Li,:M(>°*), ,O, s (rock salt, Fm3m) + 0.25 O, ; oxygen release!!

When x=0.33 (67% of SOC) in Li,MO,

Liy 55M(36™)O, (layered, R-3m) = Li, 3;M(321*), ,0; -7 (disordered spinel, Fd3m) + 0.115 O, ; oxygen release!!
Liy 55M(3%1*); (O, 77 (disordered spinel, Fd3m) = Li, ,;M(33%), 40, 55 (rock salt, Fm3m) + 0.22 O, ; oxygen release!!

= More deeper charged state, more thermally unstable.
= Released oxygen causes safety problems by reacting with flammable electrolytes. (e.g., thermal runaway)

BROOKHRAVEN
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Comparison of thermal stability of charged layered cathodes with electrolyte
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= NCM cathode shows the best thermal stability due to the large spinel stabilized temperature region.

~

why’) = Need better understanding of role of each elements during thermal decompo&gwom‘n‘wg“

Brookhaven sciencgsieftien: Soft & Hard X-ray absorption spectroscopy !!
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X-ray absorption spectroscopy : XANES and EXAFS

raw gatay
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Ni K-edge XANES of charged LI, 55Ni, 4C0O, 1sAl, 0s0, (NCA) and
Lig 33Ni;3C0,5MN, 50, (NCM) during heating
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= Much slower reduction in oxidation state of Ni ions in NCM than NCA during heating.
= Better thermal stability of Ni ions in NCM is likely due to the combined effects of the
stabilization of spinel type-phase and good thermal stability of Mn ions near Ni ions.
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Co K-edge XANES of charged Li; 3;Niy 3C0, sAl; 0s0, (NCA) and
Lig 45Ny 5C0,5MN, 50, (NCM) during heating
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g
5 Spinel Rock salt
T Co,0, CoO,
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7710 7720 7730 7740 - ' 1 ' e ' —
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= Much slower reduction in oxidation state of Co ions in NCM than NCA during heating.
= Better thermal stability of Co ions in NCM is likely due to the stabilization of Co,0, type-spinel
phase prevent further thermal degradation to CoO type-rock salt phase.
= New observation of the Co,0, type-spinel phase formation (tetrahedral coordination) in local
atomic arrangement in NCA which was not detected in TR-XRD during heating.
BROOKHRAVEN
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Ni K-edge EXAFS of charged LI, 55Ni, 4C0O, 1sAl, 0s0, (NCA) and
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= NCM shows much slower thermal decomposition to MO type-rock salt phase in local structure around Ni

compared

= Ni K-edge EXAFS clearly supports the better thermal stability of NCM than NCA due to th
sroeffects of the stabilization of spinel-type phase (likely Co,;0,) and excellent thermal stabil

Lig 33Ni;3C0,5MN, 50, (NCM) during heating
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Thermal Abuse: Newly developed in situ soft XAS
Experimental setup: in situ heating stage and detectors in UHV chamber

G

In situ soft X-ray XAS sample
holder with heating stage

Fluorescence Yield (FY) Detector
; Bulk information

o

Partial Electron Yield (PEY)
Detector
e, ;Su rface information

-3 8- E-RE-E R EEEE-EEE]

Soft X-Ray Beam
From Synchrotron
Facility of NSLS

= |n situ soft X-ray absorption technique: we are able to monitor structural changes at
the surface and in the bulk at the same time during heating. Bnnnxﬁm
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Thermal Abuse: Preliminary results of in situ soft XAS
Ni L-edge XAS for NCA cathode (LI, 35Ni, 3C0Oy 15Al, 0s0,) during heating

| PE'Y:ES'urfé

ce Thermal decomposition

FY: Bulk
\ begins at surface first!

Lig 33Nig gC0g 15Al0 050,

1 l 1 l E 1 1
850 860 870 880 850 860 870 880
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= Clear observation of the reduction of Ni** ions at the surface during heating.
= The surface of the electrode is decomposed at much earlier temperature than the bulk.

= Surface coating with thermally stable material will improve the thermal stability.
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Thermal Abuse: Preliminary results of in situ soft XAS
Comparison of NCA and NCM cathodes at Ni L-edge
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= This result is well agreed with our previous results and confirming the better thermal
oo StabIlity of NCM cathode material. 2! BROOKHAVEN
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4. In situ TEM of charged cathode
L

e Where and how the new
structure nucleated and
propagated with high
location specification and
spatial resolution (~ nm
range)
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TEM study of overcharged Li, ,,Ni sC0, 15Aly 00, (G2) at room temperature
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(@) Bright-field image from overcharged : :
R : Simulated images
Liy ,Niy gCO, 1Al 15O, particles. D|ffractograms :
(b) Selected area electron diffraction. Magnified images

(c) HR-TEM image from the circled area in (a).

= Distinguishable high resolution TEM (HR-TEM) patterns for all three phases, the layered,
spinel, and rock-salt structures have been identified, providing a road map for further studies.

= All of the above three structures were observed from the overcharged samples at room
temperature, showing the seeding formation of “high temperature phases” (spighafd#i0¢kEn
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Concluding remarks

[=] Synchrotron based X-ray technigues are very promising tools to
study electrode materials for Li-ion batteries and supercapacitors.

= |n situ X-ray diffraction (XRD) studies during charge-discharge and heating.
. comprehensive average bulk structural information.

= |n situ X-ray absorption (XAS) studies during charge-discharge and heating.
. local structural and electronic information.

= Combination of above techniques will give a new insight on identifying key
factors that limit battery safety, performance and lifetime !

= The results will contribute to the development of safe, stable, and high electro-
chemical performance electrode materials.
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