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 Background & Objectives
 
� During the past decade, the possibility of using Biodiesel has received significant 

attention since it fits well with the existing infrastructure and is environmentally 

friendlier than Petrodiesel 

� Biodiesel is a lucrative alternate for 

compression ignition engines. 

However, differences in physical & 

chemical properties of biodiesel and 

petrodiesel are not insignificant 

� Differences between biodiesel and 

petrodiesel using detailed computational modeling in terms of: 

o Inner nozzle flow (Som et al., SAE 2010): cavitation, turbulence, discharge coefficient 

o Non-reacting spray studies (Som et al., Fuel 2010): slower breakup with biodiesel 

� Develop and validate reduced chemical kinetic models for biodiesel with a mixture 

of methyl decanoate + methyl decenoate + n-heptane surrogate mixture 

� Compare the predictive capability and scalability of different biodiesel models in 

literature: (a) methyl decanoate mixture as surrogate (b) methyl butanoate mixture 

as surrogate 
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Integrated Modeling Approach
 

Primary Breakup 

Inner Nozzle Flow 
Influence of Physical and Chemical properties of fuel 

Spray 

Combustion Ignition 

Emissions 

� KHACT primary breakup model: 
Conceptual Combustion Model from 

Aerodynamics, Cavitation, Turbulence Sandia National Laboratory 
� Validation against spray data 

� Detailed Chemistry: 

Methyl Butanoate (MB) 

Methyl Decanoate (MD) 

� Validation against liquid and flame liftoff 
length data 

� Spray  flame interaction 
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Composition of Biodiesels
 

Methyl Palmitate (C17H34O2) 

Methyl Stearate (C19H38O2) 

Methyl Oleate (C19H36O2) 

Methyl Linoleate (C19H34O2) 

Methyl Linolenate (C19H32O2) 

n-heptane, n-C7H16 
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Biodiesel is a mixture of long-

chain, oxygenated, unsaturated
�

components
�



           

    

 

  

   

  

 

 

 

 

  

 

 

 
   

  
 

 

 
 

 

   

  

  

  

   

  

 

 
 

   

   

                  

Detailed Mechanisms in Practical CFD Engine
 
Simulations* 

� Large mechanism size � Detailed chemistry is important
�

3329 species;10,806 reactions 
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Mechanism reduction needed for CFD
�
simulations with large mechanisms
�

Number of species, K 

* Z Luo, M Plomer, T Lu, M Maciaszek, S Som, DE Longman. Energy and Fuels (24) 2010 
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Biodiesel Surrogates for Engine Modeling
 

� Methyl butanoate: 41 species, 150 reactions (Brakora et al; 2008) 

– Include low temperature chemistry 

– Cannot well represent the real biodiesel chemical kinetics 

� Methyl decanoate (MD):648 species and 2998 reactions (Sarathy et al; 2011) 

– Include low temperature chemistry 

– Too large to be applied in practical engine simulations 

� MD, Methyl-9-decenoate and n-heptane:118 species and 837 reactions(Luo et al;2010) 

– Suitable for high temperature flame simulations 

– Did not include low temperature chemistry 

Desired reduced biodiesel mechanism: 
• Small in mechanism size (about 100-125 species) 

• Represent the real biodiesel properties well 

• Including low and high temperature chemistry 

• No tuning of rate parameters to match specific data-sets 
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Mechanism Reduction Methodology
 

Detailed Mechanism (from LLNL) 

3329 species, 10806 reactions 

Skeletal Mechanism 

664 species, 2672 reactions 

Skeletal Mechanism 

641 species, 2670 reactions 

Range of operation: 

� Pressure: 1-100 atm 

� Equivalence ratio: 0.5-2.0 

� Initial temperature: 700 – 1800 K 

* Z. Luo, M. Plomer, T. Lu, S. Som, D.E. 
Longman, 2G02. US National Combustion 
Institute meeting, March 2011 

Lu-123* 

123 species, 394 reactions 

Lu-89 

89 species, 367 reactions 
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Validation against Detailed Mechanism
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Detailed mechanism: 3329 species;10,806 reactions 

� Reduced mechanism is able to predict ignition delay characteristics accurately!
�
� NTC region is also being well captured by both 89 and 123 species mechanisms
�
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Validation Continued
 

Extinction profiles in Species concentrations in 

perfectly stirred reactors (PSR) jet stirred reactors (JSR) 

Data: Dagaut et al. PCI 2007 
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Both 89 species and 123 species mechanism yielded similar results! 

123 species biodiesel surrogate mechanism is perhaps the biggest mechanism
�
run for 3D CFD predictions under engine like conditions! 
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Modeling Setup in CONVERGE*
 
� Liquid Injection using Blob model 

� KHACT, KHRT breakup models 
* CONVERGE Manual 

� Collision and coalescence model * Senecal et al., SAE 2007010159 
� Multicomponent Evaporation model * S. Som, PhD thesis, UIC 2009 

* S. Som et al., ASMEICE 2011 � Dynamic drag model on droplet 
* S. Som et al., Combustion and Flame 2010 

� Turbulent dispersion model 

� RNG Kε turbulence model 

� Detailed Chemistry Approach 

� NOx and soot oxidation models 

� Adaptive Mesh Resolution (AMR) 
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Parameter Quantity 

Injection System Bosch Common Rail 

Nozzle Description Single-hole, mini-sac 

Duration of Injection [ms] 7.5 

Orifice Diameter [µm] 90 

Injection Pressure [Bar] 1400 

Fill Gas Composition (mole fraction) 
N2=0.7515, O2=0.15, 

CO2=0.0622, H2O=0.0363 

Chamber Density [kg/m3] 22.8 

Chamber Temperature [K] 

Fuel Density [kg/m3] 877 

Fuel Injection Temperature [K] 363 
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Validation of Different Reaction Mechanisms
 

Ignition Delay (µs) 

Sandia Data 396 

Lu - 123 species 510 

Lu - 89 species 580 

ERC-Bio mechanism 220 

12 

� Lu – 123: 123 species, 394 reactions. Paper # IC18. 

US National Combustion Meeting, March 2011 

� Lu – 89 : 89 species, 364 reactions 

� ERC-bio mechanism: 41 species, 150 reactions. SAE 

Paper No. 2008-01-1378 

� Lu-123 species mechanism does the best job in 

predicting ignition delay and flame lift-off. Over-

prediction of about 25% only. 



         

 

 

 

 

 

 
 

 

 

 

 

 

Further Validation of Biodiesel Kinetic Models
 

OH-chemiluminescence Lu-123 species Lu-89 species
�
100 µs 

300 µs 

350 µs 

600 µs 

3000 µs 

100 µs 

300 µs 

350 µs 

600 µs 

3000 µs 
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Flame Structure with Different Mechanisms
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Due to enhanced spray-flame interaction, liquid length is lower with the
�
ERC-MB mechanism!
�



     

   

  

  

 

   

  

        

   

     

   

    

    

     

    

  

 

 

 

 
 

  

 

 

 

Computational Cost & Scalability
 

Computational Time 

(for one node) 

Lu-123 species 74 hours 

Lu-89 species 38 hours 

ERC-MB 13 hours 
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   Summary & Future Work
 

� Reduced biodiesel mechanisms with (MD+MD9D+NHPT) as surrogates were
�

developed and validated with 0D and 1D data from University of Connecticut
�

� 89 species, 364 reactions 

� 123 species, 394 reactions 

� Significant differences between methyl butanoate and methyl decanoate 

surrogate predictions were observed 

� 123 species mechanism predicted the lift-off length, ignition delay, and species 

profiles fairly well under engine-like conditions 

� Scalability studies were performed with all the mechanisms. Scalability and 

efficiency was lower with larger mechanisms 

� Full-cycle engine simulations against CAT single-cylinder engine data with 

biodiesel to further validate these mechanisms 

� Recently, the NHPT, MD, MD9D reaction pathways have been updated at LLNL. 

Use of these updated reaction pathways, has already improved ignition delay 

and flame lift-off length results. 
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Methyl Butanoate as Surrogate

� Diesel surrogate (n-heptane): 42 species,

168 reaction mechanism from Chalmers

University

� Biodiesel surrogate (methyl butanoate): 41

species, 150 reaction mechanism {Brakora

et al. SAE 2008-01-1378}
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� Lower soot emission trends with

biodiesel well captured

� Biodiesel surrogate not able to

capture the accurate NOx trends!

Data from UIUC: SAE 2010-01-0606
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Differences in Fuel Properties*

Fuel Property Diesel
Biodiesel 

(SME)

Carbon Content [wt %] 87 76.74

Hydrogen Content [wt %] 13 12.01

Oxygen Content [wt %] 0 11.25

Density @ 15⁰C (kg/m3) 820 877.2

Surface Tension @ 25⁰C (N/m) 0.020 0.0296

Heat of Combustion (MJ/Kg) 42.0 37.4

Heat of Vaporization (KJ/Kg) 361.0 336.0
*S. Som et al., FUEL 2010
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Evaporating Sprays: Liquid Length
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Data from:

1) DL Siebers: SAE 980809

2) BS Higgins, CJ Mueller, DL 

Siebers: SAE 1999-01-0519

Injection System Detroit Diesel, Common Rail

Number of Orifices 1-Cylindrical and Non-hydroground

Orifice Diameter [μm]
100 to 500 

L/D = 4.2

Injection Pressure [MPa] 40 to 180

Ambient Temperature [K] 700 to 1300

Ambient Gas Composition N2, H2O, O2, CO2

Ambient Density [kg/m3] 3.3 to 60

Oxygen concentration 15-21 %

Fuel Density [kg/m3] 832

Fuel Temperature [K] 400

Discharge Coefficient 0.78 to 0.84

Injection System Detroit Diesel, Common Rail

Number of Orifices 1-Cylindrical and Non-hydroground

Orifice Diameter [μm]
100 to 500 

L/D = 4.2

Injection Pressure [MPa] 40 to 180

Ambient Temperature [K] 700 to 1300

Ambient Gas Composition N2, H2O, O2, CO2

Ambient Density [kg/m3] 3.3 to 60

Oxygen concentration 15-21 %

Fuel Density [kg/m3] 832

Fuel Temperature [K] 400

Discharge Coefficient 0.78 to 0.84
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Why is the liquid length higher for Biodiesel?

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

300 400 500 600 700 800
H
e
a
t 
o
f 
v
a
p
o
ri
z
a
ti
o
n
 [
K
J
/K
g
]

Temperature (K)

Diesel

Biodiesel

200

225

250

275

300

325

350

375

400

0 20 40 60 80 100

T
e
m
p
e
ra
tu
re
 [
o
C
]

% Distilled

Diesel

Biodiesel

Slower breakup for biodiesel* is due to lesser amount of inner nozzle turbulence 

and cavitation. This results is increased spray penetration and reduction in spray 

cone-angle!

*S Som, DE Longman, AI Ramirez, SK Aggarwal. FUEL 2010
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Emission Characteristics in 1-D Configuration

� Counter-flow configuration to

study the NOx chemistry further

� GRI-3.0 NOx chemistry consisting

of prompt, thermal, N2O

� Simulations performed in

CHEMKIN 4
0.E+00

1.E-05

2.E-05

3.E-05

4.E-05

5.E-05

6.E-05

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

M
o

le
 f

ra
ct

io
n

 o
f 

N
O

x

Distance from Fuel Nozzle, X (cm)

Diesel-thermalNOx

Biodiesel-thermalNOx

Diesel-promptNOx

Biodiesel-promptNOx

x 500

� Prompt NOx higher for biodiesel

compared to diesel

� Thermal NOx higher for diesel

o Radical pool not captured

properly by the mechanisms
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Biodiesel Kinetic Model* for High-T Applications

� Detailed Mechanism (Methyl Decanoate + Methyl Decenoate + N-heptane) from LLNL 2010:

3329 species, 10806 reactions

� Directed Relation Graph (DRG) reduction: 472 species, 2237 reactions

� Isomer lumping and DRG reduction: 242 species, 1819 reactions

� Sensitivity analysis aided DRG: 118 species, 83 reactions final mechanism
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* Z. Luo, M. Plomer, T. Lu, S. Som, D.E. Longman, 

Energy & Fuels (2010)

� Range of operation:

o Pressure: 1-100 atm

o Equivalence ratio: 0.5-2.0

o Initial temperature > 1000 K
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Flame Structure with Different Mechanisms
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Soot Validation with MD+MD9D+NHPT Mechanism
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