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Modeling Approach
 
Influence of Physical and Chemical properties of fuel 

Inner Nozzle Flow 

Primary Breakup 

Spray 

Combustion Ignition 

Emissions 

� KH-ACT primary breakup model: � Measure fuel properties such as density, 

viscosity, surface tension, vapor pressure, Aerodynamics, Cavitation, Turbulence 
heat of combustion, heat of evaporation, 

� Detailed Chemistry*: 
distillation curve etc. for different alternate 

n-heptane : Diesel surrogate fuels 

Methyl Decanoate: Biodiesel surrogate � Predict differences in inner-nozzle flow 

* 9am Multi-dimensional Engine Modeling Session	� behavior of these fuels in terms of 

cavitation inception, turbulence levels, 

injection velocity, discharge coefficient 

etc. 

Provide boundary conditions for spray and combustion simulations for different fuels ! 
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Fuel of Interest
 
� Diesel # 2 properties obtained from literature 

� Soy Methyl Ester (SME): prevalent in North America - Peter Cremer NA 

� Rape-seed Methyl Ester (RME): prevalent in Europe – Properties obtained from Literature
�

� Cuphea Methyl Ester (CuME): explored by USDA - Knothe et al. Energy and Fuel 2009 

� Hydro-treated Vegetable Oil (HVO): Helsinki University of Technology - Gong et al. SAE 

2010-01-0739 

�

O)	�3,7-DiMethyl-1-Octanol (C10H22

Geraniol is being explored at Argonne as an blending agent to diesel fuel 

Fuel Property Diesel SME RME CuME HVO Geraniol 
Carbon Content [wt %] 87 76.74 75.79 85 75.82 

Hydrogen Content [wt %] 13 12.01 12.05 15 13.90 

Oxygen Content [wt %] 0 11.25 12.16 0 10.28 

Heat of Combustion [MJ/Kg] 42 37.4 39.7 34.8 44 41.4 

Heat of Vaporization [KJ/Kg] 361 336 85 227 242 

Cetane Number 40-45 46-55 54 56 80-89 28.05 

Surface Tension @ 298 K [N/m] 0.0250 0.0315 0.0254 0.0312 0.0125 0.029 
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Density vs. Temperature
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Methyl Esters 

� Linear effect of 

temperature on density 

� Methyl esters have similar 

densities 
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Kinematic Viscosity vs. Temperature
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� Viscosity differences 

accentuated by 

accounting for fuel density 

(dynamic viscosity) 

� Non-linear effect of 

temperature on viscosity 

� Cuphea-ME behave 

markedly different than 

other methyl esters 

� Even at 398 K the 

difference the viscosity of 

biodiesel is 2 times higher 

than that of diesel # 2 



     

          

       

Vapor Pressure vs. Temperature
 

Cavitation (phase-change) occurs when local pressure inside the injector nozzle
�
orifice is below the vapor pressure of fuel! 
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Mini­Sac Nozzle Grid Generated
 
Front View
�

� FLUENT v6.3: Mixture based 

cavitation model 

� RNG K-ε Turbulence model, non-

equilibrium wall-functions 

Orifice 
Sac 

D = 169 µm
 
Cylindrical
 

Non­hydroground
 
L/D=4.2
 

1) S. Som, A.I. Ramirez, D.E. Longman, S.K. Aggarwal, Fuel 90: 1267-1276, 2011
�
2) S. Som, D.E. Longman, A.I. Ramirez, S.K. Aggarwal, Fuel 89: 4014-4024, 2010 
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Boundary Conditions 
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Kastengren et al. ASME­ICES2009­76302 

� Full needle opening (275 µm) is characteristics of long injection durations and higher load conditions 

� Part load conditions, characterized by smaller durations of injection, needle does not open 

completely 

� Needle opens very slowly for the first part of injection i.e., t < 0.5 ms 

� Injection pressures for cavitation and turbulent regimes based on diesel # 2 (Som et al. Fuel 2010) 
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Vapor Distribution under Cavitation Regime
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� Mass flow rate depends on the competition between:  •  
m = ρ A Va) Extent of cavitation at the nozzle exit	�  fuel  fuel exit cal

 cal
b) Nozzle exit velocity
�

c) Liquid density of fuel
�
• 

� Mass flow rate of biodiesel (SME) is marginally higher	�   
m	 ρ SME  SME

� Discharge coefficient is similar for both fuels due to	� ∝ 
 •  ρhigher theoretical mass flow rates for SME	� Diesel 

thDieselm  
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       Velocity Distribution under Cavitation Regime
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Flow Characteristics under Cavitation Regime
 

Fuel Property Diesel HVO CuME SME C-10 
Quasi-steady mass flow rate (g/s) 7.09 6.84 7.02 7.49 7.74 

Exit Velocity (m/s) 480 472.4 458 434.9 432.4 

Reynolds Number @ 298K 52,105 29,835 29,910 11,609 6,500 

Turbulent Kinetic Energy (m2/s2) 2463 2904 2814 3404 3735 

Turbulence Dissipation Rate (m2/s3) 4.1E+9 4.9E+9 4.4E+9 4.8E+9 5.2E+9 

T (s) [TKE/TDR] 6.05E-7 5.92E-7 6.44E-7 7.08E-7 7.18E-7 

Discharge Coefficient (Cd) 0.688 0.685 0.689 0.686 0.750 

Area Coefficient (Ca) 0.90 0.92 0.91 1 1 

P ≈1300 bar P = 30 bar Orifice Diameter =169 µm

inj back 

� Exit velocity is higher for fluids with lower viscosity 

� Mass flow rate is higher for fuels without cavitation 

at the nozzle exit 

� Shorter time-scale for turbulent eddies => faster 

breakup 
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Cavitation Number for Inception
 

@ nozzle exit (Cavitation Regime) 

Pressure (bar) Cavitation Number 

500 15.67 

600 19.02 

1000 32.33 

Fuel @ Inception (Turbulent Regime) 

Pressure (bar) Cavitation Number 

Diesel 100 2.33 

HVO 120 3.01 

CuME 125 3.17 

SME 160 4.33 

TME 170 4.67 

RME 180 5.00 

C-10 250 7.34 

Does not transition to cavitation regime 

even at Pinj = 2000 bar! 

vaporback 

backinj 

P­P 

P­P 
CN = 

13 

High viscosity, low vapor pressure => less propensity to cavitate
�
Low viscosity, high vapor pressure => high propensity to cavitate
�
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Transient Profiles under Turbulent Regime
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� Mass flow rate depends on the competition between: 

a) Liquid density of fuel
�
b) Extent of cavitation at the nozzle exit
�
c) Nozzle exit velocity
�

� Mass flow rate and discharge coefficient of diesel is higher 

� Fluctuations in the mass flow rate and discharge coefficient 

profiles are due to the injection pressure profile 

	 • 
m  = ρ A V
fuel fuel exit cal
 cal 

 •  
m	 ρ
	 SME  SME 

• ∝ 
 ρDieselm 



       

         

  

 
   

   

  

   

  

 

          

           

     

       

Flow Characteristics under Turbulent Regime
 

Fuel Property Diesel HVO CuME SME C-10 
Quasi-steady mass flow rate (g/s) 3.3 3.0 3.2 3.1 2.86 

Exit Velocity (m/s) 178 172 172 165 167 

Reynolds Number @ 298K 24025 13750 13790 5400 3000 

Turbulent Kinetic Energy (m2/s2) 661 714 648 648 673 

Turbulence Dissipation Rate (m2/s3) 3.9E+8 4.4E+8 3.4E+8 3.4E+8 5.2E+9 

T (s) [TKE/TDR] 1.7E-6 1.6E-6 1.9E-6 1.9E-6 1.8E-6 

Discharge Coefficient (Cd) 0.75 0.72 0.75 0.70 0.67 

Area Coefficient (Ca) 1 1 1 1 1 

P	 ≈ 300 bar P = 30 bar Orifice Diameter =169 µm
inj	 back 

� SME, TME, RME predict similar nozzle flow characteristics 

(not shown here) 

� In the absence of cavitation at nozzle exit, fuels with lower 

viscosity have higher mass flow rates 

� Shorter time-scale for turbulent eddies => faster breakup 
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Account for Losses in Injected Energy
 

Turbulent Regime
�

(5-8%) Mdiesel > Mbiodiesel 

(15-18%) IEdiesel > IEbiodiesel 

Orifice Diameter (microns) 169 

Back Pressure (bar) 30 

Duration of Injection (ms) 3 

Discharge coefficients 0.67-0.75 

Mass flow rate of biodiesel needs to be increased by about 20-25 % to account for this 

loss in injected energy with biodiesel 

@ Pinj = 300 bar, a 20% increase in total mass flow rate of biodiesel corresponds to an 

injection pressure of 415 bar. Hence, the Pinj needs to be increased by about 35-40%! 

Cavitation Regime 

(3-5%) Mbiodiesel > Mdiesel 

(7-10%) IEdiesel > IEbiodiesel 

Diesel SME 

Density (Kg/m3) 820 870 

Heat of Combustion (MJ/Kg) 42.0 37.4 

Mass flow rate of biodiesel needs to be increased by about 8-12 % to account for this 

loss in injected energy with biodiesel 

@ Pinj = 1300 bar, a 10% increase in total mass flow rate of biodiesel corresponds to an 

injection pressure of 1570 bar. Hence, the Pinj needs to be increased by about 18-20%! 
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   Summary & Future Work
 
� Physical and chemical properties of different fuels measured 

� Detailed nozzle flow modeling performed: 

� Differences in physical properties resulted in significant differences in nozzle flow 

characteristics 

� Different trends in cavitation and turbulent regimes observed 

� Initial and boundary conditions for spray modeling are determined 

� Comparison of different alternate fuels: 

� Difference in flow characteristics between SME, RME, TME are minimal 

� Inner nozzle flow characteristics of CuME are similar to diesel fuel 

×	�Geraniol behaves markedly different than diesel fuel. Also due to its low Cetane 

number value, it is perhaps not a good blending agent for diesel fuel 

� HVO behaves similar to diesel fuel. Its high cetane number value is desirable as a 

diesel fuel blend 

� CAT single-cylinder engine studies with these alternate fuels to understand the 

performance and emission characteristics 

� Characterize Jatropha and Karanja biodiesel 

17 
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dlongman@anl.gov 

19 

mailto:dlongman@anl.gov
mailto:ssom@anl.gov


 Background & Objectives 
� During the past decade, the possibility of using Biodiesel has received significant 

attention since, it fits well with the existing infrastructure and is environmentally 

friendlier than Petrodiesel 

� Biodiesel is a lucrative alternate for compression ignition engines. However, 

differences in physical & chemical properties of biodiesel and petrodiesel are not 

insignificant 

� The physical and chemical properties of biodiesel from different feedstocks also vary 

significantly. Of specific interest: 

(1) Soy methyl ester	� (2) Tallow methyl ester 

(3) Cuphea methyl ester	� (4) Rape-seed methyl ester
�

� Measure fuel properties such as density, viscosity, surface tension, vapor pressure, 

heat of combustion, heat of evaporation, distillation curve etc. for different 

alternate fuels 

� Predict differences in inner-nozzle flow behavior of these fuels in terms of cavitation
�
inception, turbulence levels, injection velocity, discharge coefficient etc.
�

20 
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Coupled Nozzle Flow and Spray Modeling
 
Boundary condition for KH­ACT model 
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Diesel ­ KH­ACT Model 

1) S Som et al. SAE 2009­01­0838
 
2) Ramirez et al. JEF 2009
 
3) S Som et al. Combustion and Flame 2010
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Alternate Fuels of Interest
 
� Diesel # 2: Properties obtained from Literature 

� Soy Methyl Ester (SME): Peter Cremer NA 

� Rapeseed (RME) and Tallow (TME) Methyl Esters: Properties obtained from 

(Graboski et al. Progress in Energy and Combustion Science 1998) 

� Cuphea based biodiesel (CuME): USDA (Knothe et al. Energy and Fuel 2009)
�

Cuphea Ignea: Ornamental plants
�

� Geraniol	� O) 3,7-DiMethyl-1-Octanol
�(C10H22

� Hydro-treated vegetable oil (HVO): Helsinki University of Technology (Gong et al. 

SAE 2010-01-0739) 



   Turbulence Characteristics TKE 
(m2/s2) 

C­10 HVO RME 

DIESEL SME 
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Penetration Characteristics of Biodiesel from 
Different Feedstocks: Experimental results 

Soy-ME Cuphea-ME Diesel # 2 

Fisher et al. Energy and Fuel 2010 

Deng et al. SAE 2010-01-2268 
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Composition of Biodiesels
 

Methyl Palmitate (C17H34O2) 

Methyl Stearate (C19H38O2) 

Methyl Oleate (C19H36O2) 

Methyl Linoleate (C19H34O2) 

Methyl Linolenate (C19H32O2) 
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Biodiesel is a mixture of long-

chain, oxygenated, unsaturated
�

components
�



 

 

Boiling/Distillation Curves
 

FAME 

Components 
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