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Presentation Schedule

4:15pm: Spray A Computational Efforts (Introduction): Sibendu Som, Argonne
4:20pm: Modeling approaches by different groups

Argonne: Sibendu Som
UW-Madison: Chris Rutland
ICE-Polimi: Gianluca D'Errico
Sandia: Lyle Pickett

UNSW: Yuanjiang Pei

5:10pm: Spray A Computational Results Comparison: Sibendu Som, Argonne

5:40 - 6:10pm: Discussion



Outline

1 Baseline Spray A: non-reacting conditions

 Spray penetration vs. time
v’ Effect of grid size
v Effect of time-step size
v’ Effect of turbulence model

1 Vapor penetration vs. time
v’ Effect of grid size
v’ Effect of time step size
v’ Effect of turbulence model

O Mixture fraction at different radial positions
v Two axial positions were chosen for comparison

O Comparison of vapor boundary location
O Comparison of liquid boundary location

O 2 optional test cases investigated
v Similar grid sizes, models, model constants identified
v' No comparison against experimental data

(] Discussion & Future work!



Baseline Spray A: non-reacting conditions

Quantity

Fuel N-dodecane (n-C12H26)
Nozzle outlet diameter 90 pm
Nozzle K-factor 1.5
Nozzle shaping Hydro-eroded
Discharge coefficient 0.86
Fuel injection pressure 150 MPa
Fuel injection temperature 363 K
Injection duration 1.5 ms
Injected fuel mass 3.5mg
Injection rate shape Square
Ambient gas temperature 900 K
Ambient gas pressure 6.0 MPa (approx.)
Ambient gas density 22.8 Kg/m3

Ambient Oxygen Concentration 0%



Quick Recap
T UANL | ERc | Icepolimi | UNSW

Code/Software CONVERGE KIVA-ERC OpenFOAM FLUENT
Standard k-g, Dvnamic structure Standard k-g,
Turbulence models RNG k-¢, y LES RNG k-¢, Realizable k-g
LES- Smagorinsky Realizable k-¢
Spray models:
Injection Blob Blob Huh-Gosman Blob
Atomization & Breakup KH-RT KH-RT Bianchi, Wave Wave
Collision NTC O’Rourke No O’Rourke
Drag Dynamic Aerodynamic Dynamic Stokes-Cunningham
Evaporation Frossling Frossling Frossling Frossling
Grid:
Type Structured with AMR Structured Cartesian Structured with ALMR Structured
Dimensionality Full-3D domain 3D-Axisymmetric  Quarter-3D domain  2D-Axisymmetric
Smallest grid size 0.125 mm-LES, 0. 50 mm - LES 0.5 mm 0.25 mm
0.5 mm-RANS
Time discretization PISO KIVA-SIMPLE PISO, SIMPLE PISO
AR alnCHEE Variable Variable 5.0E-7 1.0E-7

size (ms)



Spray Penetration vs. Time

Liquid Penetration (mm)
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Quasi-steady liquid
length predicted within
+3-4% accuracy by all
models

Liquid length
fluctuations can be
reduced by injecting
higher number of
computational parcels



Liquid Penetration (mm)

U
Spray Penetration vs. Time
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Initial transience not well
predicted by any model.

1 Possible causes:

| = Accurate representation of ROI?
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Liquid Spray Structure

Sandia Data ANL ICE-Polimi
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Vapor Penetration vs. Time
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% |
Vapor Boundary Comparison
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Sandia Dat
E . inur:‘ @ After 1.0 ms it is clear
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Radial Mixture fraction Distribution

= Simulations plots at 1.5 ms

= In general, Gaussian mixture fraction
profiles are well-predicted by all models
at both axial locations

= Mixture fraction distribution along the
center line need to be compared
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Effect of “Grid” Size



Liquid Penetration (mm)

Spray Penetration

15 ' Clearly, results are not grid-
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Vapor Penetration
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Results are not grid-

independent with the RANS

models:

= Vapor penetration
increases with decrease in
grid size

= Difference in prediction
between 0.5mm and 1Tmm
grid sizes in smaller that
between 1Tmm and 2mm

+ Sandia Data = With a@aptive mesh .

resolution, was the grid

—dx=0.5mm — sufficiently resolved
oo dx=1mm = ANL downstream?
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Effect of “time-step” Size



Liquid Penetration (mm)

Spray Penetration
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= ANL results seem to be
fairly independent of
time-step size

= |CE-Polimi simulations
predict accurate liquid
penetration values for dt
= 5E-7
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Vapor Penetration

60
Vapor penetration results
seem fairly independent of
50 - time-step size!
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Effect of “Turbulence” Models



Liquid Penetration (mm)

Spray Penetration: Different RANS models
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Liquid Penetration (mm)

Spray Penetration: Different LES models
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Vapor Penetration
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Vapor Penetration

60 Results are not grid-
independent with the LES
50 4 models also:

= Vapor penetration
decreases with decrease
in grid size. This trend is
opposite to that observed
for RANS simulations

= LES models need to be
improved to better
predict vapor penetration
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Fuel Mass fraction distribution
ANL ERC*
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Smaller grid sizes results in earlier initiation of instabilities at the vapor-air interphase which

results in faster breakup and reduction in vapor penetration!
s
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Further Comparison of
Computational Approaches



Test Condition Set-up
| cael |  Cae2

Ambient gas pressure 4.0 MPa 8.0 MPa
Ambient gas density 14.8 Kg/m3 (approx.)  30.0 Kg/m?3 (approx.)

O Standard k-£ model O No break-up length concept
O Blob injection model O No turbulent dispersion
O No collision model O Minimum grid size = 0.5 mm

O Standard drag model L Fixed time-step size = 5E-7
O PISO time discretization 0 Wave secondary breakup model

O Frossling evaporation model v B; =15, 60 (KH model time-

constant)
Parcels injected 75,000 10,000 100,000
Initial TKE, TDR 5, 5000 0.735, 5.67 1, 1.3
Schmidt number 0.9 0.7 0.9
N.O cells at 1.5ms 35,000 18,350 6,300
Run time till 1.5ms 18 minutes on 8 2.65 minutes on 6 85 minutes on 2

processors processors processors
27



Liquid Penetration (mm)
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Q B1 is perhaps the most influential spray model constant
O Differences in simulation results are very apparent

= |nitial transience is markedly different
= Different steady state liquid lengths predicted
= Differences are more pronounced at lower ambient pressure values
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Vapor Penetration (mm)

Vapor Penetration
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O Differences in simulation results for vapor penetration are less pronounced

= |n fact, ANL and ICE-Polimi results are very close to each other which is very
surprising, given the differences in liquid penetration

1.50
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Discussions

Decide on future cases to run for “apples-to-apples” comparison and validation:

1)
2)
3)
4)

Grid size
Breakup model

Turbulence model (RANS vs. LES)
Chemical-kinetic mechanism

Experimental data of interest:
1) Rate of injection measured with

different techniques such as x-ray

radiography, Bosch rate-meter,

momentum flux methods.
Ramirez et al., “Quantitative X-ray

measurements of high-pressure fuel sprays

from a production heavy duty diesel

injector” Experiments in Fluids (47) 119-134,

2009
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