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DI H2 Engines: Objectives 
1. Maximize Brake Thermal Efficiency 
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2. Minimize NOX Emissions 
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 Perform Late Injection (∆ICS ↓) 
 Optimize Mixture Stratification 
       (∆WH ↓, ∆RC ↓, NOX ↓) 
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CFD ICE 

ENGINE OPTIMIZATION 

BOUNDARY CONDITIONS 

Validation 
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45% BTE 
NOX within Tier2-Bin5 
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Single-cylinder Optical Engine (SANDIA) 

Experimental Setup 

 0.56 liters displacement (passenger car) 
 Bore / stroke 92 / 85 mm 
 Engine speed 1500 RPM 
 Compression Ratio 11:1 
 N2 as bulk gas (to prevent ignition) 
 Acetone used as a tracer (PLIF) 
 2 different nozzles (single-hole, 13-holes) 
 Inj. Pressure 100 bar, 86 bar, 25 bar 
 Phase-Locked Imaging (No high-speed data) 
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Single-cylinder Optical Engine (SANDIA) 

Experimental Setup 

 0.56 liters displacement (passenger car) 
 Bore / stroke 92 / 85 mm 
 Engine speed 1500 RPM 
 Compression Ratio 11:1 
 N2 as bulk gas (to prevent ignition) 
 Acetone used as a tracer (PLIF) 
 Schlieren High-Speed Imaging 
 0.5°CA resolution 
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Fluent + RANS 

1. Gas-exchange simulated by full-geometry grid (from EVO to IVC) 
2. Information exchange between full and reduced grids at IVC 
3. Mixture formation simulated by reduced grid (from IVC to TDC) 

Inlet BC 

Numerical Approach 

Critical Issues 

 Re-Meshing algorithm (full grid) needs improvement 
 No adaptive mesh refinement 1 (globally fine mesh) 
 No adaptive mesh refinement 2 (jet-oriented mesh close to nozzle) 
 Inlet BC needed, but injection profile is unknown → Calculated by 

experimental data and assumed as trapezoidal 
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 Simulations correctly predict fuel injection and mixture 
formation 

 Jet penetration is predicted better than fuel dispersion 
 

 Results on mixture formation are grid–independent  at 
1,400,000 cells 

 Grid resolution (near-nozzle) has strong influence on jet 
penetration 

 

 The k-ε formulations (Standard, Realizable, RNG) provide 
similar results 

 k-ε Realizable yields the best agreement 

 Tuning the k-ε model improve results only quantitatively 
 

 High-speed imaging helps to validate the injection profile 
assumption 

 Near-nozzle grid refinement provides higher detail of the 
under-expanded region 

** R. Scarcelli, T. Wallner, N. Matthias, V.M. Salazar, S.A. Kaiser, SAE 2011-01-0675 
Previous Results (Single-Hole Nozzle, 100 bar) ** 

Global 
Results 

Influence of 
Grid 

Influence of 
Turbulence 
Model 

Identified 
Improvements 
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Test Cases 

  Test Case 1 Test Case 2 Test Case 3 

Nozzle 1-h 1-h 13-h 

Hole Diameter 1.46 mm 1.46 mm 0.36 ÷ 0.38 mm 

Tot. Inj. Surface 1.67 mm2 1.67 mm2 1.33 mm2 

Injection Pressure 100 bar 25 bar 86 bar 

Nominal SOI -140°CA -137°CA -140°CA 

Actual SOI -137°CA -134°CA -137°CA 

Injection duration 17.5°CA 74.5°CA 21°CA 

 Optimized Mesh (Refined near-nozzle, coarse overall) 
850,000 cells (1 hole) – 1,200,000 cells (13 holes) 

 Realizable k-ε model 
 Time step corresponding to 0.1°CA during injection 
 EMV Injector has a SOI delay of 3°CA @ 1500RPM 
 Instantaneous mass flow rate unknown. Assumed 

trapezoidal profile. Transient Duration?? 

Engine Speed = 1500 RPM – Load = 2.5 bar IMEP  

13-hole nozzle 

1-hole nozzle 
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Boundary conditions and jet transient 

Inj. Press. 100 bar 
Inj. Press. 86 bar 

Inj. Press. 25 bar 

(4 CA   transient duration) 

(4 CA   transient duration) 

(1 CA transient duration) 



SAE 2011-24-0096   “Mixture Formation in Direct Injection Hydrogen Engines: CFD and Optical Analysis of Single- and Multi-Hole Nozzles” 

11 

Injection pressure = 25 ÷ 100 bar 
Ambient pressure ≈ 1 bar 
p2 /p1 >> 1.889 (H2)       Supersonic Jet 

Under-expanded supersonic jets 

(Donaldson and Snedeker, Journal of Fluid Mechanics, 1971) 

** Ashkenaz and Sherman, Rarefied Gas Dynamics, 1966 
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Validation (1/3): Test Case 1 (1h, 100 bar) 

 Jet direction not perfect 
 Transient is not linear 
 Jet behavior along walls has to be improved 

 Assumed transient is consistent with exp. data 
 Remarkable match during entire compression 
 Prediction of fuel dispersion is satisfactory 
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Validation (2/3): Test Case 2 (1h, 25 bar) 

 Transient is not linear 
 Jet behavior along walls has to be improved 

 Assumed transient is consistent with exp. data 
 Prediction of fuel dispersion improves 
 Jet direction matches exp. data 
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Validation (3/3): Test Case 3 (13h, 86 bar) 

 Transient is not linear 
 Fuel dispersion is not accurately predicted 
 Jet interaction prediction is not accurate 
 Jet behavior along walls has to be improved 

 Assumed transient is consistent with exp. data 
 Remarkable match only during injection 
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How to improve these results? 

 Improve the description of jet impingement on the walls 
 

• Increase mesh resolution at the walls 
• Use advanced wall treatment 

 

 Improve the prediction on fuel dispersion (interacting jets) 
 

• Increase accuracy of the under-expanded region (super-fine 
computational grid in the near-nozzle region) 

• Switch to Large Eddies Simulations 
 

 Improve the description of injection profile (rate of injection) 
 

• Simulate the in-nozzle flow (Nozzle geometry and lift needed) 
• Compare with high-speed data (Schlieren – X-rays) 
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How to improve these results? 

 Improve the description of jet impingement on the walls 
 

• Increase mesh resolution at the walls 
• Use advanced wall treatment 

 

 Improve the prediction on fuel dispersion (interacting jets) 
 

• Increase accuracy of the under-expanded region (super-fine 
computational grid in the near-nozzle region) 

• Switch to Large Eddies Simulations 
 

 Improve the description of injection profile (rate of injection) 
 

• Simulate the in-nozzle flow (Nozzle geometry and lift needed) 
• Compare with high-speed data (Schlieren – X-rays) 

The Advanced Photon Source at Argonne can provide 
high-accuracy data on mass distribution through X-rays 
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Conclusions 

 CFD is an effective development tool for DI H2 Engines (a new 
nozzle can be tested in less than 1 day through simulations) 

 Mixture formation process is overall well predicted by CFD 
 Non-interacting jets show remarkable results in terms of jet 

penetration and final mixture stratification 
 Interacting jets suffer from low fuel dispersion. Penetration is 

correctly predicted 
 Higher grid resolution (near nozzle and at cylinder walls) is a key 

to improve numerical prediction 
 Injection profile can have a significant impact on fuel dispersion, 

especially for interacting jets (need to remove assumption and 
calculate it correctly) 

 Higher accuracy will require higher-fidelity (LES) approach 
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