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3-D Integrated Modeling Approach

Inner Nozzle Flow
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Conceptual Combustion Model from
Sandia National Laboratory
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U Detailed inner-nozzle flow modeling
O Spray Modeling: KH-ACT primary breakup model
Aerodynamics, Cavitation, Turbulence
Validation: X-ray radiography data
O Detailed Chemistry:
n-heptane — Diesel surrogate
n-dodecane — Diesel surrogate
Methyl Decanoate — Biodiesel surrogate
Validation:
Constant-volume vessel (Sandia National Laboratory)
Engine data (Argonne National Laboratory)



Inner Nozzle Flow Modeling

 Lack of quantitative data for validation of
nozzle flow models

[ Current nozzle flow models only consider
cavitation due to geometry changes
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Primary Breakup Model*

Underlying physic itself is not well-understood, developing models is challenging

KH-ACT (Kelvin-Helmholtz-Aerodynamics Cavitation Turbulence) Model*
Y/

 Length and time scales are calculated:

o Cavitation induced breakup: Based on bubble collapse
and burst times

o Turbulence induced breakup : Based on k-e model

o Aerodynamically induced breakup: Based on Kelvin-
Helmholtz (KH) and Rayleigh Taylor (RT) instability

(d Dominant ratio of length/time scale causes breakup

d Extensive model validation against x-ray data at Argonne
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* Tuning is necessary with KH-RT
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3-D Modeling Set-up

CONVERGE, FLUENT, OpenFOAM

Source code access for spray and combustion modeling
3D, structured with Adaptive Mesh Resolution

2nd order finite volume

Base grid size: 2mm or 4mm

Finest grid size: 0.125mm, 0.25mm

Gradient based AMR on the velocity and temperature fields.
Fixed embedding in the near nozzle region to ensure the
finest grid sizes

350K-450K for 0.25mm — RANS simulations

1.5-1.7 million for 0.125mm — LES case

Good scalability up to 48 processors

Turbulence and scalar transport model(s) ROUCR G E TN EL{]d [ 1%

IV AL Breakup: KH-RT with breakup length concept
Collision model: NTC, O’Rourke

Coalescence model: Post Collision outcomes
Drag-law: Dynamic model

Variable based on spray, evaporation, combustion processes

8 VT o O] Y Lo o s T (S (A T LT T d 1y E (o s 1B Direct Integration of detailed chemistry
well-mixed (no sub-grid model)
Time discretization scheme PISO (Pressure Implicit with Splitting of Operators)
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Spray Model Validation against X-ray Data

X-ray radiography Data: Ramirez et al., JEF 2009

140

- -
H (@] (0] o N
o o o o o

Projected Mass Density [ug/mm?]
N
o

Axial Position (mm)

Mass/Area (pglmmz)

75

¢ X-ray Data
—KH Model
- -KH-ACT Model
0.3 mm from
nozzle exit
7 mm from
nozzle exit
T4
|“!0/
1.5 -1.0 -0.5 0.0 0.5 1.0

Transverse position (mm)

1.5

Accurate fuel distribution (equivalence
ratio) is critical for reliable combustion
predictions!

 Optical techniques do not provide
qguantitative information in the near
nozzle region

 X-ray techniques do not provide
droplet size distributions in the near
nozzle region

 All necessary boundary conditions for
modeling are not available from
experiments

d Spray Dispersion accurately captured
by only the KH-ACT model. KH model
under-predicts spray spreading



Diesel vs. Biodiesel Sprays

%" Diesel Diesel

~
o Liquid Length=33.3 mm

Data from Sandia Labs:

1) DL Siebers: SAE 980809

Liquid Length=34.5 mm 2) BS Higgins, CJ Mueller, DL
Biodiesel Siebers: SAE 1999-01-0519

uid Length =41.2 mm
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Accurate prediction of liquid length with biodiesel is challenging especially at low
ambient densities
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Combustion Modeling with Biodiesel

OH-chemiluminescence L Data from Sandia National Laboratory

O Simulations plot OH contours at a cut-plane

O 89 species mechanism (using Methyl

Decanoate + Methyl Decenoate + n-heptane
10 20 30 40 50 60 70 80 as asu rrogate)
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(d Need for multi-component evaporation models
(d Computational cost increases massively by the use of such detailed kinetic models
&' together with fine resolutions and LES based turbulence models employed ;



Computational Cost & Scalability

- -Linear P
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Scalability per node =T, /T, Z
Efficiency per node = T;x100/nT, 2 : :
n = Number of compute nodes Number of Nodes

Poor scalability due to load balancing issues due to moving mesh simulations

Fusion Cluster @ Argonne: 95 -
v 320 compute nodes
v Each with a 2.6 GHz Pentium Xeon Memory
v’ Total of 2560 processors
v 36-96 GB of RAM per node _ _
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RANS vs. LES

S Experiments RANS LES
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I J Need for instantaneous data rather than time-averaged information. Such
< data is recently available from Sandia National Labs.
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N
Engine Combustion Network Modeling Effort

CODE Turbulence Grid type
model(s)
ANL CONVERGE RNG k-g, 3D, structured with
LES Smagorinsky AMR
Cambridge StarCD 4.1 RNG k-¢ 2D, uniform
CMT OpenFOAM k-€ with C_; round 2D, uniform
jet adjustment
Eindhoven AVBP (LES) LES 3D, unstructured
tetrahedral
ERC-UW KIVA-3V RNG k-¢ 2D, structured
Penn. State OpenFOAM RNG k-¢ 2D, unstructured
POLIMI OpenFOAM Realizable k-¢ 3D, structured, with
AMR
Purdue In-house (REC) k-g 2D, structured

UNSW Fluent 13.0 Realizable k-¢ 2D, structured



Comparison of different CFD codes @ ECN-1
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U In ECN-1, all groups could not converge upon a specific set of models. However, several
parameters were quite similar between modeling approaches of different groups

U Future research will focus on ensuring same models, constants, and definitions for
simulations

O In general, simulations capture global characteristics very well, however, details are
often not well predicted

d Models are not able to capture the influence of parametric variations. They can

o capture characteristics at one ambient temperature or oxygen concentration



Thank You

Contact: ssom@anl.gov

http://www.transportation.anl.gov/engines/multi_dim_model_home.html
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