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NEURAL NETWORK BASED SYSTEM FOR EQUIPMENT SURVEILLANCE

Abstract
A method and system for performing surveillance of transient signals of an industrial device to
ascertain the operating state. The method and system involves the steps of reading into a
memory training data, determining neural network weighting values until achieving target
outputs close to the neural network output. If the target outputs are inadequate, wavelet
parameters are determined to yield neural network outputs close to the desired set of target
outputs and then providing signals characteristic of an industrial process and comparing the
neural network output to the industrial process signals to evaluate the operating state of the
industrial process.
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Description
The present invention is directed generally to a method and apparatus for surveillance of the
operating state of industrial devices. More particularly, the invention is concerned with
monitoring an industrial device using a neural network methodology for optimal signal viewing
and analysis. This methodology also includes monitoring transient phases, including repetitive
transient phases, of industrial devices using the neural network and further involves training the
system to recognize normal operational states, as well as abnormal states, and to establish
corresponding reference signals to compare analytically with signals (such as startup
responses) from an industrial device being monitored.

In recent years the Sequential Probability Ratio Test ("SPRT") has found beneficial applications
as a signal validation tool, particularly the nuclear reactor industry. Two features of the SPRT
which make it attractive for parameter surveillance and incipient fault detection are (1) very early
annunciation of the onset of a disturbance in noisy process variables, and (2) the fact that the
SPRT has user-specifiable false-alarm and missed-alarm probabilities. One limitation of SPRT
systems for surveillance of industrial sensors and machinery is that they can provide reliable
surveillance only after the equipment being monitored has reached its steady state operating
range. During initial startup of machinery and electronic equipment, or during other temporary
operating states, there is a transient period when physical variables are not equilibrated to their
steady state values.
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The time period for transient phenomenon varies widely depending on the type of equipment
under surveillance. For example, for nuclear reactor physical variables, it can take several hours
to one or two days before the physical processes have fully equilibrated from a startup state.
For individual machines (e.g., automotive engines, rotating machinery, tubing pumps), the
equilibration period can take several seconds to several minutes. For electronic components,
the equilibration period can last only five to ten milliseconds or even less time.

Conventional SPRT systems have been designed to ignore such equilibration periods of an
industrial device. For systems with transient phenomena that last on the order of minutes to
days, there would conventionally be a requirement that a human operator make a judgment as
to when equilibration had been achieved; and then SPRT surveillance can be manually initiated.
For systems with very brief transient phenomena, which are too short in duration for a human to
observe, the transient phenomena would simply be masked from the SPRT system. In this case
the SPRT would be programmed to initiate surveillance a fixed time after actuation of the
equipment under surveillance.

There are drawbacks to these conventional approaches of ignoring transient behavior of
physical variables. For example, many electronic and mechanical devices undergo their
greatest stress during startup or other transient events. Thus, the SPRT surveillance system is
inactive during a time in which it may be most likely for a failure to occur. In addition, the
transient startup portion of the signal may contain a wealth of diagnostic information relating to
wearout condition, alignment, decalibration during shutdown, or the onset of subtle anomalies
that actually show a higher signal-to-noise ratio during startup than during steady state
operation.

In a more general sense surveillance of industrial devices suffers from misdiagnosis of device
response and inability to accurately classify complex industrial device responses. Consequently,
there is a general need to analyze such a universe of industrial device signals and identify
accurate indicators of abnormal operation or deviations from ideality.

It is therefore an object of the invention to provide a novel neural network classifier system and
method of operation to perform analytic translations and scalings of industrial device responses
for optimal signal viewing.

It is likewise an object of the invention to provide an improved method and apparatus for
monitoring the startup phase or other transient phases of an industrial device.

It is another object of the invention to provide a novel method and apparatus using a neural
network system for surveillance, diagnosis, and incipient disturbance annunciation for the
startup or other transient responses of an industrial device.

It is yet a further object of the invention to provide an improved method and apparatus for
surveillance of the startup or other transient phases of an industrial device to establish
attainment of equilibration by the device based on training methods.

It is also an object of the invention to provide a novel method and apparatus for monitoring the
startup or other transient phases of an industrial device to ascertain the activation point of a
sequential probability ratio test methodology for steady state surveillance.
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It is yet another object of the invention to provide an improved method and apparatus to identify
anomalous behavior of startup or other transient phase responses of an industrial device.

It is an additional object of the invention to provide a novel method and apparatus to manipulate
a transient signal into wavelet feature space to perform analysis using a static neural net
system.

Other objects, features, alternative forms and advantages of the present invention will be readily
apparent from the following detailed description of the preferred embodiments taken in
conjunction with the accompanying drawings described below.

Brief Description of the Drawings
FIGS. 1A, 1B and 1C illustrate flow charts describing operation of a preferred embodiment of a
neural net system surveillance of an industrial device response;

FIG. 2 illustrates a neural network schematic diagram;

FIGS. 3A and 3B illustrate two example cardiac system signals used to train the neural network
of FIG. 2 (FIG. 3A is a normal sinus rhythm and FIG. 3B is an abnormal rhythm--ventricular
bigeminy);

FIGS. 4A and 4B illustrate superimposed cardiac signals presented for recognition (FIG. 4A for
the normal sinus rhythm of FIG. 3A and FIG. 4B for the abnormal rhythm of FIG. 3B);

FIGS. 5A-5D illustrate neural network response surfaces in the vicinity of training values with
FIGS. 5A, 5B, 5C and 5D being the same surface viewed approximately from each of four cube
edge directions;

FIG. 6A illustrates a network classification surface for a normal cardiac signal class with a
normal class hypothesis and FIG. 6B illustrates a network classification surface for a normal
cardiac signal class but with an abnormal class hypothesis;

FIG. 7A illustrates a network classification surface for an abnormal cardiac signal class with a
hypothesized abnormal class and FIG. 7B illustrates a network classification surface for an
abnormal cardiac signal class with a hypothesized normal class;

FIG. 8 illustrates the specified output of a pump's power output over time;

FIG. 9 shows a Fourier composite curve generated using the pump spectral output of FIG. 8;

FIG. 10 illustrates a residual function characteristic of the difference between FIGS. 8 and 9;

FIG. 11A shows a periodogram of the spectral data of FIG. 8 and FIG. 11B shows a
periodogram of the residual function of FIG. 10;

FIG. 12A illustrates a noise histogram for the pump power output of FIG. 8 and FIG. 12B
illustrates a noise histogram for the residual function of FIG. 10;
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FIG. 13A shows an unmodified delayed neutron detector signal from a first sensor and FIG. 13B
is for a second neutron sensor; FIG. 13C shows a difference function characteristic of the
difference between data in FIGS. 13A and 13B and FIG. 13D shows the data output from a
SPRT analysis with alarm conditions indicated by the symbols;

FIG. 14A illustrates an unmodified delayed neutron detector signal from a first sensor and FIG.
14B is for a second neutron sensor; FIG. 14C shows a difference function for the difference
between the data of FIGS. 14A and 14B and FIG. 14D shows the result of using the instant
invention to modify the difference function to provide data free of serially correlated noise to the
SPRT analysis to generate alarm information and with alarm conditions indicated by the
symbols; and

FIG. 15A and 15B illustrate a schematic functional flow diagram of the invention with FIG. 15A
showing a first phase of the method of the invention and FIG. 15B shows the application of the
method of the invention.

Detailed Description of Preferred Embodiments
A method of performing surveillance of an industrial device using a neural network 10 (see FIG.
2 diagram) is shown schematically in the functional flow diagrams of FIGS. 1A, 1B and 1C. This
set of functionalities are implemented preferably using various computer software routines set
forth in the attached Appendices A-I. Industrial devices which are part of manufacturing
processes give rise to a potentially rich collection of signals, such as startup responses or other
transient responses, that can provide valuable information for diagnosing operating conditions
and for scheduling maintenance operations.

The surveillance methods of the invention can be used in a variety of industrial environments,
including established or new industrial processes. For example, the extent to which new
methods are successfully introduced on the factory floor is determined by several factors. An
important factor is how performance fares when the method is introduced on the production line
after simulation trials. One needs to be sure that significant non-ideal behavior on the production
line has been modeled and taken into account. In this respect, there is a class of data
transformations that can occur on the factory floor which need to be considered when designing
a neural network classifier constructed in accordance with the invention.

It is known that signal data, to be processed by a pattern recognition technique, can be
inadvertently transformed before being sampled by a data acquisition system. In order to
analyze the effect, consider a stand-alone piece of industrial equipment which is repeatedly run
through a characteristic cycle of operation. This equipment can be located on a production line
with operation automatically monitored to provide early detection and diagnosis of improper
operation. The speed of the equipment can change under external load or is operator settable
causing a scaling in time of the signal. The leading edge of the signal can be translated in time
relative to the data acquisition cycle, depending on what triggers the equipment operation. In
addition, the presence of noise with a signal can make it difficult to determine the leading edge.
Consequently, there is the potential for misalignment of the system: the neural network
monitoring the equipment was trained expecting a specific node to correspond to the leading
edge of the signal and the time varying part to a specific number of nodes. One can attempt to
correct for these effects by numerically translating and scaling the measured signal so as to
optimize the fit with stored reference signals. Since the signal is not smoothly varying, however,
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the presence of noise can make these two operations prone to numerical error. Another
approach would be to intentionally translate and scale the training signals so that they span the
expected range of the measured data. Consequently, when a measured signal is presented to
the neural network, identification is degraded and, second, there is error introduced by curve
fitting noisy signals. The invention overcomes these difficulties herein by performing signal
pattern recognition by a neural net in a way that is invariant to the affine transformation.

The present invention thus, in part, involves operation of a neural network to translate and scale
analytically the network's internal model of each signal class. This methodology has general
applicability to surveillance of industrial devices and processes, such as monitoring newly
installed methods or new equipment, analyzing startup or transient responses and considering
data signals relative to a training set of data using the neural network.

In the case of translating and scaling the model of signal class grouping, the network attempts
to align itself such that it best overlays the industrial signal presented at the input. This can be
viewed as a tuning exercise that makes up for the inherent difficulty in designing an on-line
algorithm that can accurately identify the start and length of a noisy signal when it is presented
to the neural network. The representation is chosen so that scaling and translating the reference
signal can be done without having to carry out a numerical interpolation. The reference signal is
stored in a neural network in analytic form using wavelet functions. The affine representation of
time in the wavelet functions allows the reference signal to be translated and scaled without
numerical approximation. With the neural net assembled and trained as a classifier, the n
reference signals corresponding to the n classes are then each best fit to the presented signal
by adjusting the parameters that control the affine representation. The output node with the
greatest activation identifies the pattern class to which the presented signal belongs.

One might note, however, that the need to align the presented signal and the network input
nodes at some point in the training-operation cycle has not been disposed of. Instead of aligning
at the time the signal is presented for classification, as is standard, it is preferably done prior to
training to ensure that the network has a crisp stored image. Consequently, one still translates
and scales the reference signal. Presumably this can be done with greater intelligence and
precision manually prior to training, as opposed to the alternative case, where installation and
training are more difficult.

The basic neural network in the method of the invention uses wavelet functions to represent a
time dependent signal, such as the signals in FIGS. 3A and 3B associated with the heart signal
identification problem for which the network 10 has been used. By adding weights and output
nodes, a network architecture with classification capabilities can then be obtained.

The network can be used to recognize those features in a signal which make it a member of a
class of signals that are separate from other classes of signals also to be recognized. FIGS. 4A
and 4B shows two different classes of heart signals, a normal rhythm and one exhibiting
ventribular bigeminy. The approach is to find a set of basis functions which span the space
defined by the input signals. Each signal is regarded as a vector in Cartesian space where each
of the sequential sample points lies on its own coordinate axis. The idea is that a small number
of basis functions, if properly chosen, can represent many different and complex input signal
features. The neural network operates by projecting the input signal onto the basis function
coordinate axes. The coordinate values are then passed to a classifier which associates
coordinate values with signal classes. In the heart illustrative signal identification problem, the
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classifier output would indicate either normal heart rhythm or a rhythm exhibiting ventricular
bigeminy. Many other potential applications to heart signal identification exist.

The value Up1 before scaling of the pth output of the wavelet neural network when the 1th signal
is presented at the input is given by the following equation:
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and scales the classifier output so that it lies between 0 and 1. A schematic of the neural
network 10 is shown in FIG. 2. The bottom three layers 30 of nodes constitute the wavelet
features detector part of the network 10 as given by Eqs. (1) and (2). The top two layers 40 of
nodes constitute the perceptron part of the network 10 and are used to shape the output
response surface as described below.

The network 10 shown in FIG. 2 operates as shown in FIGS. 1A-1C so that when a particular
signal pattern is presented at the input (e.g., network parameters are read in for a problem in
step on of FIG. 1A), a predetermined pattern appears at the output. The specific mapping is
learned during a "training" session of the neural network 10. Paired input-output patterns are
presented, and the network weights are adjusted so that the neural network 10 reproduces
these patterns. The adjustment is made by minimizing the error equation:
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where tp1 = target value at pth output node when input signal 1 is presented to the network 10.
Since this equation is non-linear, it is most preferably minimized through an iterative procedure.

Because each input node represents a point in time, there is a correspondence between the
point at which a time varying signal begins to vary and the node with which this leading edge is
coincident. This alignment is established during a training session. After the neural network has
been trained, the same alignment needs to be followed when a pattern is presented for
recognition.

An automatic viewing feature has been developed to produce a classifier system that is tolerant
to differences in alignment between the network input nodes and the presented signal. Such a
feature is useful when identifying heart signals. For example, differences in pulse rates among
patients are one source of misalignment. The method used in implementing the system is
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composed of two parts: the training part where network weights are computed (see FIG. 1A in
the third and fourth steps), and the signal viewing part where the already trained network 10 is
adjusted for an optimal fit to the signal presented for classification (see FIG. 1B).

As shown in FIG. 1A, the neural network 10 has been successfully trained if the error equation
given by Eq. (3) is minimized when the training data is inserted (second step of FIG. 1A). One
approach would be to use a gradient descent method to find the corresponding values of wkp, ak,
bk and ck. In the present invention, however, linearity characteristics permit solving directly for
wkp for given values of ak, bk and ck (see step three of FIG. 1A). This reduces the dimension of
the search space thereby accelerating the training process. Inserting the target values in Eq. (1)
(note step six in FIG. 1A) and combining with Eq. (2) gives an equation which is linear in wkp :

( )∑ ∑
= =








 −−=









−=

K

k

T

t k

k
kkp

p a
bthctiw

t 1 1
1

1
11ln (4)

which in matrix notation is

BAW = (5)

where

[ ] ( )

[ ]

[ ] 









−=

=
==








 −
−= ∑

=

11 ln

,1,1

1
1

1
11

p
p

kpkp

k

k
T

t
kk

t
B

wW
KkLl
a
bthctiA

KK

The solution to the above equation, if one exists, is one that minimizes the right side of Eq. (3).

If no solution exists when searching on the wkp alone, which will almost always be the case if
there are more signals than wavelets, the ak, bk and ck are introduced to provide additional
degrees of freedom. First, a best set of wkp is found by least squares. Then a gradient descent
method is used while holding the wkp constant to find values for the wavelet parameters ak, bk
and ck that minimize Eq. (3) (see steps four to six in FIG. 1A). These values are inserted back
into Eq. (5), and the process is repeated (see steps seven to nine in FIG. 1A) until Eq. (3) has
been minimized with respect to all the wkp, ak, bk and ck.

The partial derivatives used in a gradient decent method are given by
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where the derivatives on the right hand side are given by
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The first of the above four equations is not used if one solves for the w values directly by least
squares according to the above method.

In order to recognize a signal as an affine transformed version of another signal, the neural
network preferably is only trained on the latter signal. For example, the network is to recognize a
normal but rapid heartbeat as belonging to the class defined by a normal heartbeat defined at
some standard, e.g., 70 beats/sec. for a heart rate. Then when the former signal is presented to
the neural network for classification, the neural network will converge to values for s and r such
that:
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equals the learned output for the latter signal. The means for converging to the values of s and r
present a problem, however. Any search strategy will necessarily involve computing the network
output at other values of s and r. Since the corresponding signals are not in the training set, the
network output will be indeterminate.

The solution is to not only train on that one signal which represents the class (see step one of
FIG. 1B), but also train on translated and scaled versions (see step two of FIG. 1B) in the
neighborhood of that signal as set forth in FIG. 1B. The target output values are set lower so
that a gradient is established (see step three of FIG. 1B). A Cartesian coordinate system is set
up with the original signal at the point (0,1). The first axis corresponds to the translate dimension
and the second axis to the scale dimension. Enough grid points are included in the training set
so that a well shaped response surface is created. If the presented signal is a member of the
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class of signals corresponding to this response surface, then a search along the two dimensions
will lead to the peak (see last step of FIG. 1B).

Now consider the case where the presented signal is a member of a second class for which the
output has been encoded differently (see step one of FIG. 1C). Hypothesize that the signal
presented belongs to the first class. Then when r and s values are searched over, to drive the
network output toward the target for the first class, the final difference (between the actual
network output and the class target) will be larger than if the neural network had been driven
toward the second class target. A numerical arbiter would detect this difference and assign the
signal to the second class. We therefore have two assumptions built into the neural network. As
shown in step one of FIG. 1C, the first assumption is that the presented signal must belong to
one of the classes. The second assumption is that the presented signal belongs to the class for
which the error between class target and actual output is least.

The response surface typically has many local extrema that make the search for a global
extremum using a gradient search method unreliable. Many local extrema exist because the
width of a wavelet basis function is typically much smaller than the length of the signal. Many
basis functions are then needed to represent the signal. To avoid this difficulty a genetic search
technique is used. This method maintains an image of the overall surface topography and is
less likely to become stuck at a local extrema.

The shaping of the response surface so that it conforms to the training data is facilitated by the
perceptron component of the network 10. This component appears as the top two layers 40 of
nodes in FIG. 2. The network weights in the perceptron component provide additional degrees
of freedom for achieving a convex surface characterized by a single extrema.

Results obtained with human heart signals are used to illustrate application of the invention.
Heart signals exhibit the same characteristics as are found in manufacturing data which are
important from the standpoint of this network 10. These include repetitive sequence of one-shot
signal waveforms (e.g., a single heartbeat) that can be affine transformed. A normal, lead two,
heartbeat is shown in FIG. 3A. A heartbeat exhibiting ventricular bigeminy is shown in FIG. 3B.
The vertical dashed lines delineate a single pattern. The degree of reproducibility within a class
is shown in FIG. 4A and 4B with superimposed signals.

The pattern recognition problem is to determine whether the signal presented for recognition,
which may be affine transformed an unknown amount, is the normal sinus rhythm ("class I") or
the abnormal rhythm ("class II"). The signals presented for identification have been translated
up to sixteen sample intervals (about 6%) to either side of the leading edge of the same class
signal stored in the network and have been compressed or dilated up to twenty percent with the
left edge of the signal anchored. The degree of variability of signals within a class is small as
seen in FIGS. 4A and 4B, and is much smaller than the degree of translation and scaling being
admitted. Since the class patterns are significantly different, the optimal viewing feature should
in principle return a crisp indication of class and affine parameter values.

The network output is a single node with the target values binary encoded. The target output is
0.9 for class I and 0.1 for class II signal data. Because the neural network contains exponentials
at the output, it is standard to represent the logical 0 and 1 states at the output by 0.1 and 0.9
respectively. The values 0 and 1 can be achieved only by having an essentially infinite value at
the argument of the exponential, which gives rise to numerical difficulties.
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The wavelet basis functions, h(t), are given by
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As a first approximation, the initial values for the parameters a, b and c were chosen so that
each peak of the signals shown in FIGS. 4A and 4B was overlaid with the above distribution.
This gave a total of five basis functions. The initial values are shown in the Table I below.

TABLE I – Initial and Final Parameter Values

Basic
Function

Initial
a0

Initial
b0

Initial
c0

Initial
a

Initial
b

Initial
c

h1 5 50 0.700 5.212 75.613 -0.340
h2 15 125 0.200 15.855 125.626 0.219
h3 5 45 0.550 2.108 49.087 0.721
h4 13 75 -0.200 3.219 78.183 -0.678
h5 7 200 0.250 24.588 182.831 0.089

The neural network was trained in a two-step process. In the first step, the network weights and
the values of the parameters in Table I that produce the target outputs were calculated. The
target output for the heart signals in FIG. 4A was 0.9 and for the signals in FIG. 4B, it was 0.1.
The resulting values are shown in Table I. The purpose of the second step was to build a
response surface 20 (see FIGS. 5A-5D) in the neighborhood of each of the two training points in
step 1. The response surface 20 gives the value of the network output as a function of the
amount the signal presented in step one is translated and scaled when presented in step two.
The global extremum is at (0,1) and has the same value as in step 1. In other words, if the unity
scaling and zero translation signal from class I (normal sinus rhythm) were presented to the
neural network, the output would be 0.9. Scaled (different pulse rate) and translated versions of
this same signal give network outputs less extreme in value. The key in building the response
surface is to ensure that the global extremum occurs at unity scaling and zero translation. The
presence of local extremum is not important if a genetic algorithm is used in the search for the
global extremum. The response surface was built during the second training session by
including the new training signals shown in Table II. These are scaled and translated versions of
the heart signals in FIGS. 4A and 4B.
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TABLE II – Target and Actual Network Outputs After Training

Class I
Input

Trans-
lation

Scaling
Factor

Target
Output

Actual
Output

Class II
Input

Trans-
lation

Scaling
Factor

Target
Output

Actual
Output

i1 0 1.00 0.900 0.0896 i10 0 1.00 0.100 0.150
i2 -16 1.00 0.750 0.758 i11 -16 1.00 0.250 0.255
i3 16 1.00 0.750 0.752 i12 16 1.00 0.250 0.281
i4 0 0.90 0.750 0.744 i13 0 0.90 0.250 0.219
i5 0 1.10 0.750 0.782 i14 0 1.10 0.250 1.253
i6 16 0.90 0.600 0.587 i15 16 0.90 0.400 0.378
i7 16 1.10 0.600 0.608 i16 16 1.10 0.400 0.407
i8 -16 0.90 0.600 0.585 i17 -16 0.90 0.400 0.388
i9 -16 0.90 0.600 0.623 i18 -16 0.90 0.400 0.404

Ten additional wavelet basis functions were included to provide more degrees of freedom.

The response surface 20 created for signal class I (normal sinus rhythm) is shown in FIGS. 5A-
5D. The surface extremum is a ridge that contains the point (0,1). This should be interpreted as
follows. Since the signals along the ridge have very nearly the same output value as the point
(0,1), each of these signals when affine transformed backwards according to their coordinates
will yield very nearly the signal at (0,1). Thus there are many ordered pairs of translation and
scaling of the signal at (0,1) that produce signals that are close. This is to be expected, since,
for example, if a signal is stretched while anchored at the left edge, shifting to the left will tend to
restore the stretched signal back to the original.

To identify the pattern class to which a signal belongs, the presented signal is tested for
membership in each of the classes stored in the neural network. If their are n classes, then the
presented signal must be tested n times. Each time, the signal is hypothesized to belong to a
different class than those already tested. An error function which is the squared difference of the
target output for the hypothesized class and the actual network output for the signal is
minimized. The minimization is done by searching over r and s where the network output is
given by Eqs. (2) and (11). When all n classes have been tested, the class corresponding to the
least error is the class where the signal belongs (see step four of FIG. 1C).

One can observe qualitatively in FIGS. 5A-5D how successful the neural network will be in
determining the affine parameter values for a class I signal presented for viewing. If the affine
parameter values of the presented signal lie off the main ridge, the neural network will return
values that lie on the main ridge. As for there being a strong optimum along the ridge, this will
not be the case because the peak of the ridge is more nearly a line rather than a point. This
simply means that there are various combinations of translation and scaling of the presented
signal that make it match the signal in FIG. 4A.

The network quite reliably determines to which class the affine transformed input signal belongs.
This is seen in FIGS. 6A and 6B. The vertical axis shows the network output after a genetic
search was performed for each point in the horizontal plane. Each point on this plane represents
an affine transformed copy of a class I training signal. The hypothesis in the upper plot was that
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the signal was class I; and as seen in FIG. 6A, the network output is almost uniformly 0.9. The
lower plot was obtained by hypothesizing the signal was from class II. The network output
remains far from 0.1. The top plot is closer to 0.9 than the bottom plot is to 0.1 at all points in the
horizontal plane, indicating that every transformed version of the signal is correctly classified.
The degree of rejection of a hypothesis is proportional to the difference between the actual
network output, after the genetic search has converged, and the target value. The difference
should be greatest when the hypothesis is false. The parallel of FIG. 6B for a presented class II
signal is shown in FIGS. 7A and 7B. The results presented in FIGS. 6A, 6B, 7A and 7B show
that the neural network is one hundred percent effective in classifying the affine transformed
heart signals.

Once the neural network 10 has been used to analyze transient signals, the presence of
equilibrated signals can be determined, and then control will be passed to the SPRT technique
which is to be used on equilibrium state signals. The character of "transient" signals can be
stated as a pattern appearing in the middle field of three fields contiguous in time. The detected
signal remains constant in the two outer fields with the occasional appearance of small changes
due to processor sensor noise. The leading edge of the time varying part of the signal is in
general detected by computing a moving average and ascertaining when the derivative of this
average consistently breaks through a preset near zero threshold value or it can be detected by
a hypothesis test. Similarly, the trailing edge can be detected by ascertaining when the
derivative consistently remains below the preset near zero threshold or it can be detected by a
hypothesis test. Once the equilibrated signal state is identified, signals from industrial sensors
can be used to annunciate or terminate degrading or anomalous processes of such equilibrated
states. The sensor signals are manipulated to provide input data to a statistical analysis
technique, such as the SPRT methodology. Details of this process and the invention therein are
disclosed in U.S. Pat. No. 5,223,207 which is incorporated by reference herein in its entirety. A
further illustration of the use of SPRT for analysis of data bases is set forth in U.S. Pat. No.
5,410,492 and copending application of the assignee U.S. Pat. No. 5,459,675, also incorporated
by reference herein in their entirety. In performing a preferred analysis of the sensor signals as
shown in FIGS. 15A and 15B, a dual transformation method is performed, insofar as it entails
both a frequency-domain transformation of the original time-series data and a subsequent time-
domain transformation of the resultant data. The data stream that passes through the dual
frequency-domain, time-domain transformation is then processed with the SPRT procedure,
which uses a log-likelihood ratio test. A computer software Appendix I is also attached hereto
covering the SPRT procedure and its implementation in the context of, and modified by, the
instant invention.

In one preferred embodiment, successive data observations are performed on a discrete
process Y, which represents a comparison of the stochastic components of physical processes
monitored by a sensor, and most preferably pairs of sensors. In practice, the Y function is
obtained by simply differencing the digitized signals from two respective sensors. Let yk
represent a sample from the process Y at time tk. During normal operation with an undegraded
physical system and with sensors that are functioning within specifications the yk should be
normally distributed with mean of zero. Note that if the two signals being compared do not have
the same nominal mean values (due, for example, to differences in calibration), then the input
signals will be pre-normalized to the same nominal mean values during initial operation.

In performing the monitoring of industrial processes, the system's purpose is to declare a first
system, a second system, etc., degraded if the drift in Y is sufficiently large that the sequence of
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observations appears to be distributed about a mean +M or -M, where M is our pre-assigned
system-disturbance magnitude. We would like to devise a quantitative framework that enables
us to decide between two hypotheses, namely:

H1 : Y is drawn from a Gaussian probability distribution function ("PDF") with mean M and
variance σ2.

H2 : Y is drawn from a Gaussian PDF with mean 0 and variance σ2.

We will suppose that if H1 or H2 is true, we wish to decide for H1 or H2 with probability (1-β) or
(1-α), respectively, where α and β represent the error (misidentification) probabilities.

From the conventional, well known theory of Wald, the test depends on the likelihood ratio 1n,
where
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After "n" observations have been made, the sequential probability ratio is just the product of the
probability ratios for each step:
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where f(y│H) is the distribution of the random variable y.

Wald's theory operates as follows: Continue sampling as long as A<1n <B. Stop sampling and
decide H1 as soon as 1n >B, and stop sampling and decide H2 as soon as 1n  A. The acceptance
thresholds are related to the error (misidentification) probabilities by≤ the following expressions:
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The (user specified) value of α is the probability of accepting H1 when H2 is true (false-alarm
probability). β is the probability of accepting H2 when H1 is true (missed-alarm probability).

If we can assume that the random variable yk is normally distributed, then the likelihood that H1
is true (i.e., mean M, variance σ2) is given by:
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Similarly for H2 (mean 0, variance σ2):
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The ratio of (18) and (19) gives the likelihood ratio 1n
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Combining (17) and (20), and taking natural logs gives
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Our sequential sampling and decision strategy can be concisely represented as:
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Following Wald's sequential analysis, it is conventional that a decision test based on the log
likelihood ratio has an optimal property; that is, for given probabilities α and β there is no other
procedure with at least as low error probabilities or expected risk and with shorter length
average sampling time.

A primary limitation that has heretofore precluded the applicability of Wald-type binary
hypothesis tests for sensor and equipment surveillance strategies lies in the primary assumption
upon which Wald's theory is predicated; i.e., that the original process Y is strictly "white" noise,
independently-distributed random data. White noise is thus well known to be a signal which is
uncorrelated. Such white noise can, for example, include Gaussian noise. It is, however, very
rare to find physical process variables associated with operating machinery that are not
contaminated with serially-correlated, deterministic noise components. Serially correlated noise
components are conventionally known to be signal data whose successive time point values are
dependent on one another. Noise components include, for example, auto-correlated (also
known as serially correlated) noise and Markov dependent noise. Auto-correlated noise is a
known form of noise wherein pairs of correlation coefficients describe the time series correlation
of various data signal values along the time series of data. That is, the data U1, U2, . . . , Un have
correlation coefficients (U1, U2), (U2, U3), . . . , (Un-1, Un) and likewise have correlation
coefficients (U1, U3) (U2, U4), etc. If these data are auto-correlated, at least some of the
coefficients are nonzero. Markov dependent noise, on the other hand, is a very special form of
correlation between past and future data signals. Rather, given the value of Uk, the values of Un,
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n>k, do not depend on the values of Uj where j<k. This implies the correlation pairs (Uj, Un),
given the value Uk, are all zero. If, however, the present value is imprecise, then the correlation
coefficients may be nonzero. One form of this invention can overcome this limitation to
conventional surveillance strategies by integrating the Wald sequential test approach with a new
dual transformation technique. This symbiotic combination of frequency-domain transformations
and time-domain transformations produces a tractable solution to a particularly difficult problem
that has plagued signal-processing specialists for many years.

In one preferred embodiment of the method shown in detail in FIGS. 15A and 15B, serially-
correlated data signals from an industrial process can be rendered amenable to the SPRT
testing methodology described hereinbefore. This is preferably done by performing a frequency-
domain transformation of the original difference function Y. A particularly preferred method of
such a frequency transformation is accomplished by generating a Fourier series using a set of
highest "1" number of modes. Other procedures for rendering the data amenable to SPRT
methods includes, for example, auto regressive techniques, which can accomplish substantially
similar results described herein for Fourier analysis. In the preferred approach of Fourier
analysis to determine the "1" highest modes (see FIG. 15A):
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where α0 /2 is the mean value of the series, am and bm are the Fourier coefficients
corresponding to the Fourier frequency ωm, and N is the total number of observations. Using the
Fourier coefficients, we next generate a composite function, Xt, using the values of the largest
harmonics identified in the Fourier transformation of Yt. The following numerical approximation
to the Fourier transform is useful in determining the Fourier coefficients am and bm. Let xj be the
value of Xt at the jth time increment. Then assuming 2π periodicity and letting (ωm = 2πm/N, the
approximation to the Fourier transform yields:
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for 0<m<N/2. Furthermore, the power spectral density ("PSD") function for the signal is given by
1m where
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To keep the signal bandwidth as narrow as possible without distorting the PSD, no spectral
windows or smoothing are used in our implementation of the frequency-domain transformation.
In analysis of a pumping system of the EBR-II reactor of Argonne National Laboratory, the
Fourier modes corresponding to the eight highest 1m provide the amplitudes and frequencies
contained in Xt. In our investigations for the particular pumping system data taken, the highest
eight 1m modes were found to give an accurate reconstruction of Xt while reducing most of the
serial correlation for the physical variables studied. In other industrial processes, the analysis
could result in more or fewer modes being needed to accurately construct the functional



United States Patent 5,745,382

Vilim ,   et al. April 28, 1998

16

behavior of a composite curve. Therefore, the number of modes used is a variable which is
iterated to minimize the degree of nonwhite noise for any given application. As noted in FIG.
15A a variety of noise tests are applied in order to remove serially correlated noise.

The reconstruction of Xt uses the general form of Eqn. (25), where the coefficients and
frequencies employed are those associated with the eight highest PSD values. This yields a
Fourier composite curve (see end of flowchart in FIG. 15A) with essentially the same correlation
structure and the same mean as Yt. Finally, (see FIG. 15B) we generate a discrete residual
function Rt by differencing corresponding values of Yt and Xt. This residual function, which is
substantially devoid of serially correlated contamination, is then processed with the SPRT
technique described hereinbefore.

In a specific example application of the above referenced methodology, certain variables were
monitored from the Argonne National Laboratory reactor EBR-II. In particular, EBR-II reactor
coolant pumps (RCPs) and delayed neutron (DN) monitoring systems were tested continuously
to demonstrate the power and utility of the invention. All data used in this investigation were
recorded during full-power, steady state operation at EBR-II. The data have been digitized at a
2-per-second sampling rate using 214 (16,384) observations for each signal of interest.

FIG. 8 illustrates data associated with the preferred spectral filtering approach as applied to the
EBR-II primary pump power signal, which measures the power (in kW) needed to operate the
pump. The basic procedure of FIGS. 15A and 15B was then followed in the analysis. FIG. 1
shows 136 minutes of the original signal as it was digitized at the 2-Hz sampling rate. FIG. 9
shows a Fourier composite constructed from the eight most prominent harmonics identified in
the original signal. The residual function, obtained by subtracting the Fourier composite curve
from the raw data, is shown in FIG. 10. Periodograms of the raw signal and the residual function
have been computed and are plotted in FIGS. 11A and 11B. Note the presence of eight
depressions in the periodogram of the residual function in FIG. 11B, corresponding to the most
prominent periodicities in the original, unfiltered data. Histograms computed from the raw signal
and the residual function are plotted in FIGS. 12A and 12B. For each histogram shown we have
superimposed a Gaussian curve (solid line) computed from a purely Gaussian distribution
having the same mean and variance. Comparison of FIG. 12A and 12B provides a clear
demonstration of the effectiveness of the spectral filtering in reducing asymmetry in the
histogram. Quantitatively, this decreased asymmetry is reflected in a decrease in the skewness
(or third moment of the noise) from 0.15 (raw signal) to 0.10 (residual function).

It should be noted here that selective spectral filtering, which we have designed to reduce the
consequences of serial correlation in our sequential testing scheme, does not require that the
degree of nonnormality in the data will also be reduced. For many of the signals we have
investigated at EBR-II, the reduction in serial correlation is, however, accompanied by a
reduction in the absolute value of the skewness for the residual function.

To quantitatively evaluate the improvement in whiteness effected by the spectral filtering
method, we employ the conventional Fisher Kappa white noise test. For each time series we
compute the Fisher Kappa statistic from the defining equation
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where 1(ωk) is the PSD function (see Eq. 27) at discrete frequencies ωk, and l(L) signifies the
largest PSD ordinate identified in the stationary time series.

The Kappa statistic is the ratio of the largest PSD ordinate for the signal to the average ordinate
for a PSD computed from a signal contaminated with pure white noise. For EBR-II the power
signal for the pump used in the present example has a K of 1940 and 68.7 for the raw signal
and the residual function, respectively. Thus, we can say that the spectral filtering procedure
has reduced the degree of nonwhiteness in the signal by a factor of 28. Strictly speaking, the
residual function is still not a pure white noise process. The 95% critical value for Kappa for a
time series with 214 observations is 12.6. This means that only for computed Kappa statistics
lower than 12.6 could we accept the null hypothesis that the signal is contaminated by pure
white noise. The fact that our residual function is not purely white is reasonable on a physical
basis because the complex interplay of mechanisms that influence the stochastic components
of a physical process would not be expected to have a purely white correlation structure. The
important point, however, is that the reduction in nonwhiteness effected by the spectral filtering
procedure using only the highest eight harmonics in the raw signal has been found to preserve
the pre-specified false alarm and missed alarm probabilities in the SPRT sequential testing
procedure (see below). Table III summarizes the computed Fisher Kappa statistics for 13 EBR-II
plant signals that are used in the subject surveillance systems. In every case the table shows a
substantial improvement in signal whiteness.

The complete SPRT technique integrates the spectral decomposition and filtering process steps
described hereinbefore with the known SPRT binary hypothesis procedure. The process can be
illustratively demonstrated by application of the SPRT technique to two redundant delayed
neutron detectors (designated DND-A and DND-B) whose signals were archived during long-
term normal (i.e., undegraded) operation with a steady DN source in EBR-II. For demonstration
purposes a SPRT was designed with a false alarm rate,α, of 0.01. Although this value is higher
than we would designate for a production surveillance system, it gives a reasonable frequency
of false alarms so that asymptotic values of α can be obtained with only tens of thousands of
discrete observations. According to the theory of the SPRT technique, it can be easily proved
that for pure white noise (such as Gaussian), independently distributed processes, a provides
an upper bound to the probability (per observation interval) of obtaining a false alarm--i.e.,
obtaining a "data disturbance" annunciation when, in fact, the signals under surveillance are
undegraded.

FIGS. 13 illustrate sequences of SPRT results for raw DND signals and for spectrally-whitened
DND signals, respectively. In FIGS. 13A and 13B, and 14A and 14B, respectively, are shown
the DN signals from detectors DND-A and DND-B. The steady state values of the signals have
been normalized to zero.
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TABLE III – Effectiveness of Spectral Filtering for Measured Plant Signals

Fisher Kappa Test Statistic (N = 16,384)
Plant Variable I.D. Raw Signal Residual Function
Pump 1 Power 1940 68.7
Pump 2 Power 366 52.2
Pump 1 Speed 181 25.6
Pump 2 Speed 299 30.9
Pump 1 Radial Vibr (top) 123 67.7
Pump 2 Radial Vibr (top) 155 65.4
Pump 1 Radial Vibr (bottom) 1520 290.0
Pump 2 Radial Vibr (bottom) 1694 80.1
DN Monitor A 96 39.4
DN Monitor B 81 44.9
DN Detector 1 86 36.0
DN Detector 2 149 44.1
DN Detector 3 13 8.2

Normalization to adjust for differences in calibration factor or viewing geometry for redundant
sensors does not affect the operability of the SPRT. FIGS. 13C and 14C in each figure show
pointwise differences of signals DND-A and DND-B. It is this difference function that is input to
the SPRT technique. Output from the SPRT method is shown for a 250-second segment in
FIGS. 13D and 14D.

Interpretation of the SPRT output in FIGS. 13D and 14D is as follows: When the SPRT index
reaches a lower threshold, A, one can conclude with a 99% confidence factor that there is no
degradation in the sensors. For this demonstration A is equal to 4.60, which corresponds to
false-alarm and missed-alarm probabilities of 0.01. As FIGS. 13D and 14D illustrate, each time
the SPRT output data reaches A, it is reset to zero and the surveillance continues.

If the SPRT index drifts in the positive direction and exceeds a positive threshold, B, of +4.60,
then it can be concluded with a 99% confidence factor that there is degradation in at least one
of the sensors. Any triggers of the positive threshold are signified with diamond symbols in
FIGS. 13D and 14D. In this case, since we can certify that the sensors were functioning properly
during the time period our signals were being archived, any triggers of the positive threshold are
false alarms.

If we extend sufficiently the surveillance experiment illustrated in FIG. 13D, we can get an
asymptotic estimate of the false alarm probability α. We have performed this exercise using
1000-observation windows, tracking the frequency of false alarm trips in each window, then
repeating the procedure for a total of 16 independent windows to get an estimate of the variance
on this procedure for evaluating the false alarm probability. The resulting false-alarm frequency
for the raw, unfiltered, signals is α = 0.07330 with a variance of 0.000075. The very small
variance shows that there would be only a negligible improvement in our estimate by extending
the experiment to longer data streams. This value of a is significantly higher than the design
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value of α = 0.01, and illustrates the danger of blindly applying a SPRT test technique to signals
that may be contaminated by excessive serial correlation.

The data output shown in FIG. 14D employs the complete SPRT technique shown
schematically in FIGS. 15A and 15B. When we repeat the foregoing exercise using 16
independent 1000-observation windows, we obtain an asymptotic cumulative false-alarm
frequency of 0.009142 with a variance of 0.000036. This is less than (i.e., more conservative
than) the design value of α = 0.01, as desired.

It will be recalled from the description hereinbefore regarding one preferred embodiment, we
have used the eight most prominent harmonics in the spectral filtration stage of the SPRT
technique. By repeating the foregoing empirical procedure for evaluating the asymptotic values
of a, we have found that eight modes are sufficient for the input variables shown in Table III.
Furthermore, by simulating subtle degradation in individual signals, we have found that the
presence of serial correlation in raw signals gives rise to excessive missed-alarm probabilities
as well. In this case spectral whitening is equally effective in ensuring that pre-specified missed-
alarm probabilities are not exceeded using the SPRT technique.

In a different form of the invention, it is not necessary to have real sensors paired off to form a
difference function. Each single sensor can provide a real signal characteristic of an ongoing
process and a second artificial signal can be generated to allow formation of a difference
function. Techniques such as an auto regressive moving average (ARMA) methodology can be
used to provide the appropriate signal, such as a DC level signal, a cyclic signal or other
predictable signal. Such an ARMA method is a well-known procedure for generating artificial
signal values, and this method can even be used to learn the particular cyclic nature of a
process being monitored enabling construction of the artificial signal.

The two signals, one a real sensor signal and the other an artificial signal, can thus be used in
the same manner as described hereinbefore for two (paired) real sensor signals. The difference
function Y is then formed, transformations performed and a residual function is determined
which is free of serially correlated noise.

Fourier techniques are very effective in achieving a whitened signal for analysis, but there are
other means to achieve substantially the same results using a different analytical methodology.
For example, filtration of serial correlation can be accomplished by using the ARMA method.
This ARMA technique estimates the specific correlation structure existing between sensor
points of an industrial process and utilizes this correlation estimate to effectively filter the data
sample being evaluated.

A technique has therefore been devised which integrates frequency-domain filtering with
sequential testing methodology to provide a solution to a problem that is endemic to industrial
signal surveillance. The subject invention particularly allows sensing slow degradation that
evolves over a long time period (gradual decalibration bias in a sensor, appearance of a new
radiation source in the presence of a noisy background signal, wear out or buildup of a radial
rub in rotating machinery, etc.). The system thus can alert the operator of the incipience or
onset of the disturbance long before it would be apparent to visual inspection of strip chart or
CRT signal traces, and well before conventional threshold limit checks would be tripped. This
permits the operator to terminate, modify or avoid events that might otherwise challenge
technical specification guidelines or availability goals. Thus, in many cases the operator can



United States Patent 5,745,382

Vilim ,   et al. April 28, 1998

20

schedule corrective actions (sensor replacement or recalibration; component adjustment,
alignment, or rebalancing; etc.) to be performed during a scheduled system outage.

Another important feature of the technique which distinguishes it from conventional methods is
the built-in quantitative false-alarm and missed-alarm probabilities. This is quite important in the
context of high-risk industrial processes and applications. The invention makes it possible to
apply formal reliability analysis methods to an overall system comprising a network of interacting
SPRT modules that are simultaneously monitoring a variety of plan variables. This amenability
to formal reliability analysis methodology will, for example, greatly enhance the process of
granting approval for nuclear-plant applications of the invention, a system that can potentially
save a utility millions of dollars per year per reactor.

While preferred embodiments of the invention have been shown and described, it will be clear to
those skilled in the art that various changes and modifications can be made without departing
from the invention in its broader aspects as set forth in the claims provided hereinafter.

Claims
What is claimed is:

1. A method of performing surveillance of transient signals of an industrial device to
determine an operating state thereof, comprising the steps of:

(a) reading into a memory training data;

(b) determining neural network weighting values by the steps comprising:

(1) solving a set of linear equations for obtaining the neural network weighting
values;

(2) computing a neural network output;

(3) evaluating the neural network output to determine whether the output is close to
a set of target outputs;

(4) continuing steps (1)-(3) until achieving the target outputs; and

(5) providing a neural network output;

(c) providing signals characteristic of an industrial process;

(d) comprising the neural network output to said industrial process signals to ascertain
the operating state of the industrial process comprising the steps of:

(1) hypothesizing said industrial process signals belong to a particular class;

(2) at least one of translating and scaling stored neural network training signals: and
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(3) determining error between the neural network output for said industrial process
signals and said stored neural network training signals.

2. The method as defined in claim 1 further includes additional steps after said step (b)
when the target outputs are not sufficiently close to the target outputs, said steps
comprised of:

commencing iterating on wavelet parameters; and

calculating the neural network output for the wavelet parameters until achieving a
desired set of the wavelet parameters such that the network output converges to the
desired set of target outputs.

3. The method as defined in claim 1 wherein the network weighting values are adjusted to
enable meeting the target outputs by minimizing an error equation given by:
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where tp1 = target value at pth output mode when input signal 1 is presented to the neural
network.

4. The method as defined in claim 1 wherein n potential classes exist and the industrial
process signals are tested n times to determine the proper class for the process signals.

5. The method as defined in claim 1 where output values up1 of the neural network are
given in terms of the weighting values wkp, and coefficients thereof including ak, bk and ck
as follows:
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where i1 (t) = value of input signal 1 at time t.

6. The method as defined in claim 5 wherein a defined best set of wkp values is found by
least squares followed by applying a gradient descent method to determine the values of
said ak, bk and ck.

7. The method as defined in claim 1 wherein the industrial process signals comprise
biological signals.

8. The method as defined in claim 7 wherein the biological signals comprise heart signals.

9. The method as defined in claim 1 wherein the industrial process signals comprise
signals having substantially constant signals either side thereof characteristic of
equilibrium signals for the industrial process.
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10. The method as defined in claim 9 wherein further including the step of determining onset
of equilibrium signals from the industrial process and implementation of a SPRT
analysis.

11. The method as defined in claim 1 wherein said step (b) comprises training on translated
and scaled versions of the training data.

12. The method as defined in claim 11 wherein the training process includes setting the
target outputs lower, thereby establishing a gradient.

13. The method as defined in claim 11 wherein a cartesian coordinate system is established
with an original signal at point (0,1), a first axis corresponding to a translate dimension
and a second axis corresponding to a scale dimension and said training data
establishing a well-shaped response surface, thereby enabling evaluation of a presented
signal to determine whether it is a member of the same class as the training data.

14. The method as defined in claim 13 wherein the output of the network is input to a two
layer perceptron network thereby providing additional degrees of freedom for enhanced
shaping of the response surface.

15. The method as defined in claim 13 wherein error between the training data and the
presented signal is least for the class to which it belongs.

16. The method as defined in claim 13 wherein a genetic search method is used to find a
global extremum in said response surface.

17. A method of performing surveillance of transient signals of an industrial device to
determine an operating state thereof, comprising the steps of:

(a) reading into a memory training data;

(b) determining neural network weighting values by the steps comprising:

(1) solving a set of linear equations for obtaining the neural network weighting
values;

(2) computing a neural network output;

(3) evaluating the neural network output to determine whether the output is close to
a set of target outputs;

(4) continuing steps (1)-(3) until achieving the target outputs; and

(5) providing a neural network output;

(c) providing signals characteristic of an industrial process;
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(d) calculating the neural network output for the wavelet parameters until achieving a
desired set of the wavelet parameters which yield the neural network output close to
a desired set of target outputs by performing the following steps:

(1) hypothesizing said industrial process signals belong to a particular class;

(2) translating and scaling stored neural network training signals; and

(3) determining error between the neural network output for said industrial process
signals and said stored neural network training signals.

(e) providing signals characteristic of an industrial process;

(f) comparing the neural network output to said industrial process signals to ascertain
the operating state of the industrial process.

18. The method as defined in claim 17 wherein the industrial process signals comprise
transient signals.

19. The method as defined in claim 17 further including the step of annunciating an alarm
condition upon detecting a deviation of the industrial process signals from a desired one
of the particular class.

20. The method as defined in claim 17 wherein said industrial process signals are selected
from the group consisting of engine startup signals, biological pulse signals, chemical
process startup signals, power plant startup signals and electronic systems transient
signals.
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