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INDUSTRIAL PROCESS SURVEILLANCE SYSTEM

Abstract
A system and method for monitoring an industrial process and/or industrial data source. The
system includes generating time varying data from industrial data sources, processing the data
to obtain time correlation of the data, determining the range of data, determining learned states
of normal operation and using these states to generate expected values, comparing the
expected values to current actual values to identify a current state of the process closest to a
learned, normal state; generating a set of modeled data, and processing the modeled data to
identify a data pattern and generating an alarm upon detecting a deviation from normalcy.
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Description
The present invention is related generally to a method and system for carrying out surveillance
of industrial processes using sensor or data source outputs. More particularly, the invention is
concerned with a method and system for processing sensor data and using virtual data as an
improved methodology over basic statistical approaches to industrial process surveillance.
Further, the invention involves use of a plurality of techniques coupled for enhanced analysis of
industrial process data.

Conventional parameter-surveillance schemes are sensitive only to gross changes in the mean
value of a process or to large steps or spikes that exceed some threshold limit check. These
conventional methods suffer from either large numbers of false alarms (if thresholds are set too
close to normal operating levels) or a large number of missed (or delayed) alarms (if the
thresholds are set too expansively). Moreover, most conventional methods cannot perceive the
onset of a process disturbance, sensor deviation or data anomaly which gives rise to a signal
below the threshold level for an alarm condition. Most methods also do not account for the
relationship between a measurement by one sensor relative to another sensor measurement.

In another monitoring method, a conventional sequential probability ratio test ("SPRT")
technique has found wide application as a signal validation tool in the nuclear reactor industry.
The SPRT method is a pattern recognition technique which processes the stochastic
components associated with physical process variables and has high sensitivity for the onset of
subtle disturbances in those variables. Two features of the conventional SPRT technique make
it attractive for parameter surveillance and fault detection: (1) early annunciation of the onset of
a disturbance in noisy process variables, and (2) the SPRT technique has user-specifiable false
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alarm and missed-alarm probabilities. SPRT techniques are primarily directed to the analysis of
data from paired or multiple pairs of sensors in contrast to a large number of different process
sensor data points. SPRT is also typically dependent on assumptions of the data being
independent of other data sources and being Gaussian distributed data. The SPRT technique
used alone therefore has certain shortcomings in identifying anomalies in processes.

Other types of statistical techniques also have been developed for industrial process monitoring
and analysis but have other insensitivities for certain classes of sensor data.

It is, therefore, an object of the invention to provide an improved method and system for
surveillance of industrial processes and apparati.

It is another object of the invention to provide a novel method and system for on-line
surveillance of industrial processes and apparati with multiple sensors.

It is also an object of the invention to provide an improved method and system for evaluation of
process data, on-line or off-line, from sensors or data accumulation sources.

It is a further object of the invention to provide a novel method and system for performing
preliminary analysis of data for alarm conditions prior to data input to a SPRT system.

It is an additional object of the invention to provide an improved method and system for masking
selected sensor data and substituting virtual data to perform tests to determine whether
abnormal process conditions or abnormal sensor conditions exist and whether or not to halt or
modify the process under scrutiny.

It is still another object of the invention to provide a novel method and system using training
data characteristic of normal system and/or sensor and/or data source operation to compare
with ongoing industrial processes and/or data accumulation.

It is yet a further object of the invention to provide an improved method and system for
processing data from a process to determine training data for normal operation, storing such
training data on a computer storage media and analyzing real process data relative to the
normal training data using a plurality of mathematical methodologies stored on a ROM or PROM
storage medium.

It is also an additional object of the invention to provide a novel method and system utilizing a
virtual signal characteristic of normal state operation derived on the basis of correlation with a
plurality of other process data values to compare with a real process data signal set for deriving
the likelihood of an abnormal process or operation of data sources.

It is yet another object of the invention to provide a novel method and apparatus to accumulate
training data to recognize any one of a plurality of specific states of operation and thereby
identify a particular type of fault or condition present in a process or other system.

It is also a further object of the invention to provide a novel method and apparatus for monitoring
a process using training data to identify slowly changing operational sensor data characteristic
of normal process changes.
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It is still an object of the invention to provide an improved method and system for determining
whether a system or data source abnormality can be ignored without undesirable effects.

Other advantages and features of the invention, together with the organization and manner of
operation thereof, will become apparent from the following detailed description when taken in
conjunction with the accompanying drawings described below.

Brief Description of the Drawings
FIG. 1 illustrates a schematic functional flow diagram of a preferred embodiment of the
invention;

FIG. 2 illustrates a functional flow diagram of a time lead-lag correlation methodology;

FIG. 3 illustrates a functional flow diagram of a method of determining a full range of data by
searching normal state training data;

FIG. 4 illustrates a functional flow diagram of a method for modeling behavior of commercial
system operating states;

FIG. 5 illustrates a functional flow diagram of a method for performing pattern recognition;

FIG. 6A illustrates sensor signals having a four second delay before applying a lead-lag method,
and FIG. 6B illustrates the sensor signals after applying the lead-lag method;

FIG. 7A illustrates sensor signal data from pump 1 power with an SMSET estimate
superimposed thereon; FIG. 7B illustrates the SMSET estimation error between the SMSET
estimate and the sensor signal data; and FIG. 7C illustrates a histogram of the error;

FIG. 8A illustrates sensor signal data from pump 2 power with an SMSET estimate
superimposed thereon; FIG. 8B illustrates the SMSET estimation error between the SMSET
estimate and the sensor signal data; and FIG. 8C illustrates a histogram of the error;

FIG. 9A illustrates sensor signal data from pump 1 speed with an SMSET estimate
superimposed thereon; FIG. 9B illustrates the SMSET estimation error between the SMSET
estimate and the sensor signal data; and FIG. 9C illustrates a histogram of the error;

FIG. 10A illustrates sensor signal data from pump 2 speed with an SMSET estimate
superimposed thereon; FIG. 10B illustrates the SMSET estimation error between the SMSET
estimate and the sensor signal data; and FIG. 10C illustrates a histogram of the error;

FIG. 11A illustrates sensor signal data for reactor outlet flow rate; FIG. 11B illustrates the
SMSET estimation error between the SMSET estimate and the sensor signal data; and FIG.
11C illustrates a histogram of the error;

FIG. 12A illustrates sensor signal data for primary pump 2 flow rate; FIG. 12B illustrates the
SMSET estimation error between the SMSET estimate and the sensor signal data; and FIG.
12C illustrates a histogram of the error;
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FIG. 13A illustrates sensor signal data for subassembly outlet temperature 1A1; FIG. 13B
illustrates the SMSET estimation error between the SMSET estimate and the sensor signal
data; and FIG. 13C illustrates a histogram of the error;

FIG. 14A illustrates sensor signal data for subassembly outlet temperature 2B 1; FIG. 14B
illustrates the SMSET estimation error between the SMSET estimate and the sensor signal
data; and FIG. 14C illustrates a histogram of the error;

FIG. 15A illustrates sensor signal data for subassembly outlet temperature 4E1; FIG. 15B
illustrates the SMSET estimation error between the SMSET estimate and the sensor signal
data; and FIG. 15C illustrates a histogram of the error;

FIG. 16A illustrates sensor signal data for subassembly outlet temperature 4F 1; FIG. 16B
illustrates the SMSET estimation error between the SMSET estimate and the sensor signal
data; and FIG. 16C illustrates a histogram of the error;

FIG. 17A illustrates sensor signal data for reactor outlet temperature 1534CF; FIG. 17B
illustrates the SMSET estimation error between the SMSET estimate and the sensor signal
data; and FIG. 17C illustrates a histogram of the error;

FIG. 18A illustrates sensor signal data for primary tank sodium level 530 Float; FIG. 18B
illustrates the SMSET estimation error between the SMSET estimate and the sensor signal
data; and FIG. 18C illustrates a histogram of the error;

FIG. 19A illustrates sensor signal data for primary tank sodium level 531 induction; FIG. 19B
illustrates the SMSET estimation error between the SMSET estimate and the sensor signal
data; and FIG. 19C illustrates a histogram of the error;

FIG. 20A illustrates standard deviation of SMSET errors for each of the data in FIG. 7-19; and
FIG. 20B illustrates the mean value of SMSET errors for each of the data in FIG. 7-19;

FIG. 21 shows subassembly outlet temperature ("SOT") and SMSET estimates and in particular
FIG. 21A illustrates time dependent normal SOT for 3F1 in the EBR-II nuclear reactor; FIG. 21B
illustrates normal SOT for 3C1; FIG. 21C illustrates normal SOT for 5C2 and FIG. 21D
illustrates normal SOT for 7A3;

FIG. 22A-D illustrates SMSET estimation error for each of the data of FIGS. 21A-D,
respectively;

FIG. 23A-D illustrates SPRT results for each of the data of FIGS. 21A-D, respectively;

FIG. 24A corresponds exactly to FIG. 21A; FIG. 24B includes a linear drift component compared
to FIG. 21B; and FIGS. 24C and 24D correspond exactly to FIG. 21C and 21D, respectively;

FIG. 25A corresponds exactly to FIG. 22A; FIG. 25B includes the effect on SMSET estimation
error of the linear drift of FIG. 24B; and FIGS. 24C and 24D correspond exactly to FIGS. 22C
and 22D, respectively;
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FIG. 26A corresponds exactly to FIG. 23A; FIG. 26B illustrates the SPRT results for the linear
drift error of FIG. 24B; and FIGS. 26C and D corresponds exactly to FIG. 23C and D,
respectively;

FIGS. 27A and 28B corresponds exactly to FIGS. 21A and 21B, respectively; FIG. 27C includes
a temporary amplitude pulse of 0.25% of the signal magnitude; and FIG. 27D corresponds
exactly to FIG. 21D;

FIGS. 28A and 28B corresponds exactly to FIGS. 22A and 22B; FIG. 28C illustrates SMSET
estimation error for the amplitude pulse effect of FIG. 27C and FIG. 27D corresponds exactly to
FIG. 22D;

FIGS. 29A and 29B corresponds exactly to FIGS. 23A and 23B; FIG. 29C illustrates SPRT
results of the amplitude pulse in FIG. 27C; and FIG. 29D corresponds exactly to FIG. 23D;

FIG. 30A illustrates EBRII subassembly temperature data 3F1 but includes a uniform gain
change compared to FIG. 21A and FIGS. 30B-D correspond exactly to FIGS. 21B-D;

FIG. 31A illustrates the SMSET estimation error for the gain change of FIG. 30A; and FIGS.
31B-D correspond exactly to FIGS. 22B-D, respectively; and

FIG. 32A illustrates the SPRT results for the gain change of FIG. 30A and SMSET analysis of
FIG. 31A; and FIGS. 32B-D correspond exactly to FIGS. 23B-D, respectively.

Detailed Description of Preferred Embodiments
The system 10 herein includes a methodology (see FIG. 1) and apparatus for surveillance of
sensor or data accumulation configurations in industrial, utility, business, medical, investment
and transportation applications. The system 10 is useful for sensitive identification of the onset
of sensor or data source degradation, process or system anomalies, or the onset of change to a
different operational state. The most preferred form of the system 10 comprises a synergistic
integration of four techniques to provide enhanced surveillance capabilities compared to
conventional approaches (including neural networks), and also provide enhanced reliability and
improved computational efficiency. The four elements that make up the most preferred
surveillance form of the system 10 are embodied in four different methodologies generally
characterized as a time correlation module 20, a training module 30, a system state estimation
module 40 and a pattern recognition module 50.

Many attempts to apply conventional neural networks to nuclear, petrochemical or any industrial
process surveillance applications have met with poor results in part because they fail to take
into account lead-lag relationships (lack of proper time correlation of the data sets) between the
various sensors or data sources. In one example, a pipe is instrumented with a sequence of N
thermocouples ("TCs") which measure the instantaneous temperature of the fluid passing
through the pipe; and the signals from these TCs are displaced in time along the fluid stream
flow path. If the sampling interval for the sensors is smaller than the transit time for fluid passing
through the pipe, any attempt to monitor these signals with a neural net will produce very high
uncertainties in the estimated signals for the TCs. For example, if it takes ten seconds for the
fluid to pass through the pipe, and the sampling interval is one second, then at any given instant
in time, TC(N), at the outlet end of the pipe, is seeing fluctuations that passed TC(1) ten
seconds ago. These TCs may still contain a small degree of correlation due to gross changes in
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fluid temperature from a heat source or sink that is upstream of the pipe; however, the more
valuable intersensor correlation that arises from local temperature perturbations carried along
the pipe will be lost. This same phenomenon degrades the performance of neural networks and
other pattern-recognition paradigms applied to any processes wherein the physical sensors or
data sources are displaced in time across the process they are monitoring. Other examples of
time delays in correlated systems include: systems with slow data flow rates and/or large
physical distances (oil refineries, power plants, HVAC (heat, vent and air conditioning systems),
and financial systems), delays due to analog or digital electronics (noise filters and large
capacitors) or transmission delays (satellite communications, or transmitting data over different
BUS systems.

In a preferred form of the time correlation model 20, a Leadlag component of the invention (see
FIG. 6) performs dynamic, real-time intersensor lead-lag adjustments. The Leadlag module 20
performs adjustments so that the output signals, which are then input subsequently into the
SMSET routine (the system state estimation module 40), are optimally correlated and impart the
maximum information content to the pattern recognition module 50. The Leadlag module 20 is
attached hereto as a computer software Appendix A. The Leadlag module 20 accomplishes the
adjustment function by performing, for each pair of signals, an iterative regression procedure
that generates a vector of correlation coefficients with respect to lag time. This vector of
correlation coefficients is a unimodal concave function of lag time. Thus, the optimal lag time
between the pair of signals is identified simply by searching for the zero-crossing of the first
derivative of the vector with respect to the lag time.

In other forms of the invention it may be unnecessary to utilize the Leadlag module 20, as noted
in FIG. 1 wherein the option exists to skip use of the module 20. This could occur for systems in
which there is adequate time correlation or if time shifting is not needed to achieve correlation. If
the Leadlag module 20 is not utilized or the data has already been processed by the Leadlag
module 20, the data is preferably input to a training module 30.

In a preferred embodiment this training module is a MiniMax module 30 which searches through
all the observations for all signals or data during a training time period to construct training
vectors that include the highest point and lowest point for each signal or data space under
surveillance. A computer software Appendix B sets forth the MiniMax module 30 The MiniMax
module 30 produces an "optimal" training set. It is optimal in the sense that it contains only, at
most, 2N vectors, where N is the number of signals or data points in the system; and these
vectors span the full range that all sensors or data sources have noted during the available
training period. Wherever two or more sensors or data sources simultaneously attain maxima or
minima, the resulting number of training vectors will be less than 2N.

In another form of the invention both the Leadlag module 20 and the MiniMax module 30 can be
skipped, and the data can be input directly to the system state module 40.

Once the MiniMax module 30 has constructed a system model (or been skipped as noted
above), the system state estimation module 40 (such as the preferred Subsystem Multivariate
State Estimation Technique ("SMSET") module) models the behavior of a system through
examples of the operating states of the commercial system being modeled. A computer
software Appendix C sets forth the SMSET module 40. In general, the system state estimation
module 40 can be any one of a variety of modeling methodologies, such as auto regressive
moving average, a neural network, or a Kalman filtering technique or an empirical methodology.
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The SMSET module 40 utilizes its memory of the learned states of the commercial system in
conjunction with a single new observation to provide an estimate of the current "true" system
state. States of the system are represented by vectors whose elements are comprised of direct
values of system parameters (measured signals) as well as any transformation of these system
parameters that produce scalar values, e.g., calculated parameters based upon measured data.
The SMSET module 40 does not require the state vector elements to be linearly independent as
do most other types of estimation techniques. The learning process, which results in a "learned-
state" matrix, is performed according to the MiniMax module 30 and the Leadlag module 20
described hereinbefore.

The basic methodology of the SMSET module 40 involves the input of a new observation of the
behavior of a system that is compared with the "memory" of previous system behavior
embodied in the learned-state matrix. A series of mathematical operations are performed that
generates an estimate of the states in the system's memory that is "closest" to the new
observation. The definition of "closest" that is used by the SMSET module 40 is the state that is
lying closest to the new observation from the point of view of a set of rules that determine the
association of two vectors. From this closest state, an estimate of the "true" state of the system
is performed for each and every element of the state vector. Thus, given a set of current
observed parameters of a system, the SMSET module 40 provides an estimate of the current
true state of the system. The value of this method is that an estimate of all of the values of the
system parameters in the state vector can be provided even if the current observation vector is
incomplete (e.g., some sensors of data sources may have failed or are no longer available),
contains erroneous or faulty elements (some sensors may have drifted, become uncalibrated,
become contaminated with high noise levels, etc.), or even if the new system state does not
coincide with previous operating states. However, the new system state must, in a general
sense, be bounded by the domain of the states used to develop the system memory (learned-
state matrix).

This estimation of the true current state of the commercial system, including estimated values of
all system parameters, is used in conjunction with the actual measured system parameters to
ascertain the operability of sensors (or other data sources) and disturbances in the system
state. This state estimation process can further be described as an inference engine that
accepts as input a set of learned states and a new observation of the commercial system. After
a series of operations are performed by the inference engine on this input, the result is an
estimate of the learned state "closest" to the new observation. The definition of "closest" used
here is the state lying closest to the new observation from the point of view of a set of rules that
determine the association (overlap) of any two vectors. Another result is the estimation of the
"true" value of each and every element in the new observation vector in the form of an
estimated state vector. The series of operations performed in the inference engine consist of
various matrix operations. First, all pairs of learned states are preferably associated two at a
time using a rule set to create the elements of a recognition matrix. Next, the new observation is
associated with each learned state using the rule set to produce a vector that has the same
number of elements as the number of learned states. The largest element value in this vector
identifies the "closest" learned state to the new observation. Finally, the normal matrix product
of this vector with the recognition matrix produces a set of linear combination coefficients for
combining the learned states into the estimated state vector. This methodology, when applied to
any true state of a commercial system that is a combination of the learned states, yields a very
close approximation to the true state. The actual closeness achieved depends most upon
nonlinearities arising from the rule set and physical and/or random fluctuations in the variables
and is demonstrated by direct testing. General experience with use of this method for real
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operating commercial systems has indicated predictive capabilities typically no worse than ±
0.5% and normally ± 0.1%.

Once the SMSET module 40 has modeled the data as described hereinbefore, the data is input
to a pattern recognition module 50, such as the Sequential Probability Ratio Test ("SPRT")
module. The computer software for the SPRT module 50 is in Appendix D. This SPRT module
50 is a sensitive pattern recognition method that can detect the onset of subtle degradation in
noisy signals with high reliability, and with quantitative false-alarm and missed-alarm
probabilities. Output from the SMSET module 40 is provided as a set of estimated signals (also
called "virtual signals") for each sensor under surveillance. These virtual signals are fed into a
network of interacting SPRT modules 50 together with the actual sensor readings. Each of the
SPRT modules 50 receives one sensor-signal, virtual-signal pair. If any sensor degradation or
process disturbance starts to affect the output of one or more signals under surveillance, the
SPRT module(s) 50 provide an annunciation to the operator and an actuator signal to the
control system, which can selectively as needed automatically swap in the virtual signal to
replace the degrading sensor signal, or data source. Further details of the SPRT module 50 are
described in U.S. Pat. No. 5,459,675, which is incorporated by reference herein.

The above-described combination of methodologies enables identification of a faulted process,
a particular type of fault, a faulted sensor or data source or faulty data itself and enables actions
to be taken to correct or modify the process being monitored.

In some cases when a failed sensor, or improper data stream source, is not important to the
continued operation of a commercial system, the user can continue operating the commercial
system or process if the sensor or data source were operating normally. For example, the
system 10 can operate to substitute in a modeled estimate into an actual commercial system or
process as input to replace a failed sensor or failed data source. This allows the commercial
system or process to keep operating.

Since the system 10 does not rely on analytical modeling by itself, it is applicable to a wide
variety of processes and systems, such as petro-chemical, power generation, automotive,
manufacturing, medical, aeronautical, financial and any system in which signals are available for
processing that are related to the commercial system/ process operation or performance. The
only requirement of the system 10 is that there is some type of cross-correlation, be it linear or
nonlinear, between the signals used as input to the system 10. The signals can be linear,
nonlinear, stationary, nonstationary, clean or noisy (with an arbitrary distribution). The system
10 uses a database of historical operation data to model the commercial system or process.
The database is assumed to contain data from all relevant operating modes of the system;
however, if a new mode of operation is encountered and is determined not to be a result of
commercial system or sensor failures, a new vector can be added to the existing training matrix
to incorporate the unanticipated operating mode in the system model.

The following nonlimiting examples illustrate various aspects of the invention described herein.
The data used is all taken from the EBR-II reactor at Argonne National Laboratory (West).

Example I
The effect of time delay correlation is described in this example, and FIGS. 6A and 6B show two
voltage signals with a four second delay between them. Before the signals are processed by the
Leadlag module 20 (see FIG. 6A), the correlation coefficient is 0.0182 which implies no
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correlation versus processing through the Leadlag module 20 to obtain a correlation of 0.9209
(see FIG. 6B). When the set of signals, or data, being used is more than two, all the possible
pair combinations are used to calculate maximum possible correlation coefficients so all signals
can be properly correlated.

Example II
An experiment to determine the accuracy of the invention (the "SMSET" methodology generally)
was carried out using sensor data from the Experimental Breeder Reactor II (EBR-II) at Argonne
National Laboratory (US58). The sensor data set contained 13 signals from sensors monitoring
EBR-II. Table I shows the SMSET Estimation accuracy for EBR-I1 Data. Table I includes the
channel numbers and descriptions for each of the sensor signals used in the analysis. The
experiment was conducted in three steps; first the SMSET module was trained using two days
worth of EBR-II data, next the trained SMSET module was used to estimate the state of
approximately 110 hours worth of EBR-II data, and then the accuracy of the estimates was
analyzed. For each of the sensor signals listed in Table I, FIGS. 7-19, respectively, show the
sensor signal (top plot) and SMSET estimate superimposed, the middle plot shows error
between the SMSET and the sensor signal (in percent of the signal magnitude), and a
histogram (bottom plot) of the error. The histogram plots are compared to a Gaussian
distribution with the same mean and variance to give an idea of how Gaussian the error signals.
FIG. 20 provide a summary of the data of FIGS. 7-19.

A methodology entitled MiniMax (Appendix B) was used to train the system using the two days
of training data cited above. After the MiniMax method was applied, a training matrix was
constructed consisting of twenty-five unique vectors constituting an empirical model of the
overall system. After creating the model, the methodology was then applied to the signals listed
in the accuracy table. Each signal in the system has its own estimation error signal that is a
measure of how close the pattern recognition model is representing the system relative to the
sensor readings. The second column of Table I lists the standard deviation of the estimate error
for all of the signals in the experiment in terms of each of the signals' magnitude. The magnitude
of the signal is defined by its mean during normal operation. The third column in Table I lists the
mean of the estimate error for all of the signals also in terms of the signal magnitude. In general
the estimate error standard deviations are in the range of 0.01% to 0.1% and the estimate error
means are centered around 0. Bar graphs of the tabular information are shown in FIGS. 20A
and 20B as graphic representation of the accuracy information.

TABLE I – SMSET Estimation Accuracy Table for EBR-II Data

Channel Number and
Description

SMSET Estimate Error
Standard Deviation

(% of Sensor Magnitude)

SMSET Estimate Error
Mean Value

(% of Sensor Magnitude)
1) Primary Pump #1 Power 0.05245 0.01241
2) Primary Pump #2 Power 0.14352 0.06595
3) Primary Pump #1 Speed 0.01078 0.00001
4) Primary Pump #2 Speed 0.01272 -0.00278
5) Reactor Outlet Flowrate 0.09585 0.04452
6) Primary Pump #2 Flowrate 0.06034 -0.02495
7) Subassembly Outlet

Temperature 2B1
0.04635 0.00339
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8) Subassembly Outlet
Temperature 2B1

0.04904 -0.00118

9) Subassembly Outlet
Temperature 4E1

0.05664 -0.00306

10) Subassembly Outlet
Temperature 4F1

0.04926 -0.00413

11) Reactor Outlet Temperature
1534CF

0.04727 0.00513

12) Primary Tank Sodium 0.02440 -0.00280
13) Primary Tank Sodium Level

531 Induction
0.00615 0.00316

Example III
In FIGS. 21-32 examples of different sensor failure modes are shown along with how the
system reacts to the failures. The preferred method of FIG. 1 is applied to the data. The sensor
signals used in these examples are from a subset of 22 sensor signals used in the system. The
22 sensors monitored the EBR-II subassembly system at Argonne National Laboratory (West).
Each of FIGS. 21-32 contains four subplots in which the upper most plot is related to
Subassembly Outlet Temperature ("SOT") 3F1, the upper middle plot is related to SOT 3C1, the
lower middle plot is related to SOT 5C2, and the bottom plot is related to SOT 7A3. The system
applied in each of the examples uses the same training matrix, which consists of 83 vectors
selected from a training database containing almost a weeks worth of data taken once every
minute.

In FIGS. 21-23 are shown the results of using the system 10 during approximately 5.5 days of
normal operation of EBR-II. FIG. 21 shows the SOT signals with their corresponding SMSET
estimates (signal being the circles and the lines being the estimate). FIG. 22 shows the
respective raw estimate errors (not in terms of the signal magnitude) derived by taking the
difference between the SOR signals and corresponding SMSET estimates. Finally in FIG. 23
the results are shown from applying the decision making module of the system 10 (the SPRT
module 50--see Appendix D) to the SMSET estimation errors of FIG. 22. The SPRT plots show
a total of only three false alarms which is a false alarm rate of 9.4.times.10-5, and this is well
within the specified false alarm rate of 1.0.times.10-3.

One type of failure mode that is common among sensors is a slow drift. This type of failure can
be difficult to detect early on especially when the sensor signals contain noise. FIGS. 24-26
illustrate a comparative example of processing data from this type of failure and failure
identification. Signal #2 (FIG. 24B) has a 0.2% linear drift in it's mean over the 2.75 day period
starting at 4000 minutes into the signal. The other sensors are operating normally. FIG. 25
shows the resulting SMSET estimation errors for each sensor signal. The error plot for signal #2
(FIG. 25B) shows evidence of drifting after the sensor signal has drifted approximately 0.05%. In
FIG. 26 the SPRT method has determined that #2 (FIG. 26B) is drifting after approximately
0.05% of drift and that all other sensors are operating normally.

Another type of failure that can occur is a step change in the sensor signal. This can be the
result of a short in the sensor or DAS, a calibration error or for a variety of other reasons. FIGS.
27-29, show an example of this type of failure for the SOT measurements. In this example
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sensor signal #3 (FIG. 27C) contains a pulse with an amplitude of 0.25% of the signal
magnitude. The pulse starts at 4000 minutes and lasts for 2000 minutes. FIG. 27 shows the
sensor signals and the SMSET estimates for the four SOT signals. FIG. 28 shows the resulting
SMSET estimation errors. The error signal for #3 (FIG. 28C) shows that there is a problem
starting at 4000 minutes and ending at 6000 minutes. The error signals are fed through the
SPRT module 50, and the results are plotted in FIG. 29. Clearly, there has been a disturbance
in sensor #3 (FIG. 29C) beginning at time 4000 minutes and ending at 6000 minutes.

In FIGS. 30-32 an example of a failure mode related to the sensor gain is shown. In this
example the gain of the sensor signal changes over time, i.e., the amplitude is increasing over
time. The gain begins changing linearly over time from a beginning value of 1 to a final value of
1+0.075% of the sensor magnitude. The system 10 for the estimation error is applied to the
signals, and the results are shown in FIG. 31. A human operator would most likely not be able to
tell that there is a problem even after 8000 minutes by looking at the sensor signal. In FIG. 31A,
it is apparent that signal #1 is operating abnormally. This is confirmed in FIG. 32A by the SPRT
results, showing a steadily increasing number of SPRT alarms over the 8000 minute period.

While preferred embodiments of the invention have been shown and described, it will be
apparent to those skilled in the art that various changes and modifications can be made without
departing from the invention in its broader aspects as set forth in the claims provided
hereinafter.

Claims
What is claimed is:

1. A method for monitoring at least one of an industrial process and industrial sensors,
comprising the steps of:
generating time varying data from a plurality of industrial sensors;
processing the time varying data to effectuate optimum time correlation of the data
accumulated from the plurality of industrial sensors;
searching the time correlated data to identify maximum and minimum values for the
data, thereby determining a full range of values for the data from the industrial process;
determining learned states of a normal operational condition of the industrial process
and using the learned states to generate expected values of the operating industrial
process;
comparing the expected values to current actual values of the industrial process to
identify a current state of the industrial process closest to one of the learned states and
generating a set of modeled data;
processing the modeled data to identify a pattern for the data and upon detecting a
deviation from a pattern characteristic of normal operation, an alarm is generated.

2. The method as defined in claim 1 wherein the industrial process comprises a physical
process.

3. The method as defined in claim 1 wherein the industrial process comprises a financial
process.

4. The method as defined in claim 1 wherein the step of determining optimum time
correlation comprises comparing pairs of sensor signals, each characteristic of a
separate sensor and calculating a cross correlation vector over time, applying a low pass
filter to remove noise from the cross correlation vector and determining phase shift
between the sensor signals.
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5. The method as defined in claim 4 wherein the step of determining phase shift comprises
differentiating the cross correlation vector with respect to lag time between each pair of
signals and performing an interpolation to compute the root of the differential of the cross
correlation vector.

6. The method as defined in claim 1 wherein the step of identifying a current state of the
industrial process closest to the learned state includes forming a combination of the
learned states to identify a true state of the industrial process.

7. The method as defined in claim 6 further including the step of substituting an expected
value for incomplete observations of the industrial process.

8. The method as defined in claim 1 wherein the step of detecting a deviation from normal
operation comprises applying a sequential probability ratio test to the modeled data.

9. The method as defined in claim 1 wherein the step of detecting a deviation from normal
operation comprises performing a pattern recognition analysis using computer means.

10. A method for monitoring at least one of an industrial process and an industrial data
source, comprising the steps of:
generating time varying data from a plurality of industrial data sources;
determining learned states of a normal operational condition of the industrial process to
use the learned states to generate expected values of the operating industrial process;
comparing the expected values to current values of the industrial process to identify a
current state of the industrial process closest to one of the learned states and generating
a set of modeled data;
processing the modeled data to identify a pattern for the data and upon detecting a
deviation from a pattern characteristic of normal operation, an alarm is generated.

11. The method as defined in claim 10 wherein the step of identifying a current state of the
industrial process closest to the learned state includes forming a combination of the
learned states to identify a true state of the industrial process.

12. The method as defined in claim 10 further including the step of substituting an expected
value for incomplete observations.

13. The method as defined in claim 10 wherein the industrial data source is selected from
the group consisting of an industrial manufacturing process, a utility operation, a
business operation, an investment process, weather forecasting and a transportation
system.

14. The method as defined in claim 10 wherein the plurality of industrial data sources
comprises a plurality of sensor pairs.

15. The method as defined in claim 10 wherein the step of processing the modeled data
comprises applying a SPRT process.

16. The method as defined in claim 10 further including a step of determining time phase
shift between the plurality of the time varying data being output.

17. A method for monitoring at least one of an industrial process and an individual date
source, comprising the steps of:
sensing time varying data from at least one industrial data source of an industrial
process;
determining learned states of a desired operational condition of the industrial process to
use the learned states to generate expected values of the industrial process;
comparing the expected values to current sensed values of the industrial process to
identify a current state of the industrial process closest to one of the learned states and
generating data characteristic of the current state; and
processing the data that is characteristic of the current state to identify a pattern for the
data and upon detecting a deviation from a pattern characteristic of the desired
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operational condition, a signal is generated indicating at least one of the industrial
process and the industrial data source is not of the desired operational condition.

18. The method as defined in claim 17 further including the step of searching the time
varying data, before comparing the current actual values to the expected values, to
identify minimum and maximum values for the data, thereby establishing a full range of
values for the data.

19. The method as defined in claim 18 wherein each said industrial data source is
characterized by two data values associated with the minimum and maximum values.

20. The method as defined in claim 17 wherein said step of processing the data
characteristic of the current state to identify a pattern comprises applying a sequential
probability ratio test.

21. The method as defined in claim 20 wherein data that is characteristic of the current state
is processed to generate a set of modeled data which is further processed to identify the
pattern for the data.

22. The method as defined in claim 17 wherein the industrial process is selected from the
group consisting of a manufacturing process, a physical process, a chemical process, a
biological process, an electronic process and a financial process.

23. The method as defined in claim 17 further including the step of substituting an estimated
signal for said industrial data source upon detecting the deviation from a pattern
characteristic of the desired operational condition, thereby replacing a faulted data
source enabling continued operation and monitoring of the industrial process.

24. The method as defined in claim 17 further including the step of processing the time
varying data to effectuate optimum time correlation of the data.

25. The method as defined in claim 24 wherein the step of determining optimum time
correlation comprise comparing pairs of sensor signals, each characteristic of a separate
sensor and calculating a cross correlation vector over time, applying a low pass filter to
remove noise from the cross correlation vector and determining phase shift between the
sensor signals.

26. A method for monitoring at least one of an industrial process and an industrial sensor,
comprising the steps of:
sensing time varying data from at least one industrial data source of an industrial
process;
searching signals from the at least one industrial data source to identify maximum and
minimum values for the time varying data;
determining learned states of a desired operational condition of the industrial process to
use the learned states to generate expected values of the industrial process; and
processing the expected values by identifying a pattern for the time varying data and
upon detecting a deviation from the desired operational condition, a signal is generated
indicating at least one of the industrial process and the industrial data source is not of
the desired operational condition.

27. The method as defined in claim 26 further including the step of substituting an estimated
signal for said industrial data source upon detecting the deviation from a pattern and
characteristic of the desired operational condition, thereby replacing a faulted data
source enabling continued operation and monitoring of the industrial process.

28. The method as defined in claim 26 further including the step of processing the time
varying data to effectuate optimum time correlation.

29. The method as defined in claim 26 wherein the step of identifying a pattern for the time
varying data comprises applying a sequential probability ratio test.
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30. The method as defined in claim 26 wherein the industrial process is selected from the
group consisting of a manufacturing process, a physical process, a chemical process, a
financial process, an electronic process and a biological process.
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