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A Simple Conclusion Has a Complex Set of
Causes. Those Causes are Examined.

Conclusion:

Potential fuel consumption reductions from
hybridization of the biggest U.S. commercial trucks —
Class 8 combination trucks (C8CTs) - are far lower than
for front wheel drive cars

Observation:

By examining two ends of the spectrum — most
favorable to least favorable — we can later better
understand important vehicles in between, such as:

— Rear wheel drive passenger cars

— Front wheel drive passenger trucks

— Rear wheel drive passenger trucks

— Rear wheel drive straight trucks for urban delivery




Two Ends of the U.S. Highway Vehicle Market — a Mid-
Size Car and Large Commercial Truck - are Examined

Mid-size C8CT
Car (heavy truck)

(sedan)
Input/Test Mass (kQ) 1648 31,818
Engine kW 115 320
Peak W/kg 70 10
Engine size (L) 3.0 12.0
Transmission Auto (4) Manual(10)
Frontal Area (m?) 2.20 8.66
Drag Coefficient 0.32 0.70
Rolling Resistance 0.009 0.0065
CO (C1) (0.000115) (0.00000145)




The Theoretical Mid-Size Car is Slightly
Larger than a Toyota Prius Hybrid
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2005 Toyota Prius — Classified as Mid-Size by the U.S. Government



U.S. Class 8 Combination Truck (C8CT) Tractors Use
Aerodynamic Features, Trailers do Not
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Experimental Trailer Commercial Tractor

U.S. C8CT With an Experimental Aerodynamic Trailer (5 axles typical)

(Straight trucks [not shown] have an integral storage box on 2-3 axles)



C8CTs Dominate the U.S. Consumption of
Commercial Truck Highway Diesel Fuel
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How are Fuel Consumption Reductions from Use of
Regenerative Braking Energy Achieved?

Note: Fuel energy suffers high losses before becoming useful.
Useful enerqgy Is defined here as positive tractive enerqy plus

accessory energy! Negative tractive energy accomplishes

deceleration. It has the potential to become useful energy via
regeneration. Many losses occur before a small amount of
useful energy is made available.

Friction braking energy, which is less than negative tractive
energy, must be converted to electrical energy by a generator,
stored, used by a motor to eliminate engine use and losses.

— Issue 1: How much of the engine’s useful (and wasted) energy can be
replaced by a motor via generated and stored electrical energy?

— Issue 2: Since the stored energy can be used flexibly in time, when are
the most effective times to replace useful energy to enhance efficiency?

— Issue 3: Does the motor power allow substitution of more efficient engine
technology in a manner acceptable to the consumer and society?
» Atkinson cycle can be used despite low power density
* Diesels may be enabled by hybrid powertrain emissions reduction benefits




Cycles Studied = 7 for Cars, 5 for C8CTs. Stop Frequency
and Deceleration Affect Regeneration Energy Totals.
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Some Attributes of Driving Cycles Examined and Used



Some Fundamentals are Difficult.

All prior losses to aerodynamic drag and rolling resistance before
deceleration starts are irretrievable losses. Kinetic energy is
theoretically retrievable, but retrieval is practically limited.

Positive inertia kinetic energy = negative inertia kinetic energy over a
stop-start sequence and over a driving cycle

Only a small portion of negative inertia kinetic energy can be
converted via regenerative braking to positive useful energy.

Deceleration is caused in a conventional vehicle by four forces:
— Aerodynamic drag (causing further irretrievable losses, unless the hybrid is altered)
— Rolling resistance (causing further irretrievable losses unless the hybrid is altered)
— Driveline friction (which may be different in a hybrid than conventional powertrain)
— Friction braking

Regenerative brakes convert energy otherwise lost to friction brakes
Hybrid regenerative brakes cannot entirely replace friction brakes

Numerous losses occur after generation of electricity by
regenerative braking, before useful energy is created by the motor



Capture, Storage and Use of Braking Energy Involves Many
Losses. A Small Share of Useful Energy Can be Replaced
Stepwise Losses up to Braking Energy and After to Replace Useful Energy
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10 Example: UDDS-LDV Cycle — Results Vary Significantly by Cycle




3 Fuel Consumption Reduction Effects via Use of Captured
Braking Energy are Possible, and are Separately Examined
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Partial engine (energy) replacement (reduction in amount

of useful energy originating from the engine and from fuel)

— using the motor and battery instead of engine and fuel holding
modal distribution of energy use ~ constant

Efficiency enhancement (improvement in efficiency of an

unaltered engine during times that it continues to operate)

— selectively using motor and battery instead of engine, differing
mode shares for fuel and electric energy

Engine substitution (altering the engine used)

— downsizing the engine, using motor power to maintain total power
and comparable acceleration

— adopting more efficient engine technology
» Atkinson cycle spark ignition gasoline
» Direct injection compression ignition diesel



Engine (Enerqgy) Replacement Benefits are

Computed - Car for 7 Cycles, C8CT 5
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An Important Accounting Concept is Average Modal Energy

Use and Efficiency Over the Cycle
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Modes of Operation (conventional vehicle efficiency)

Vehicle stop (very low)
Acceleration (highest)

Cruise (intermediate)

Powered Deceleration (intermediate)

Unpowered Deceleration (very low)



Efficiency Enhancement - Uses Electric Energy to Replace
Least Fuel-Efficient Modes

Est. Effect of Replacing least Efficient 19% of
Useful Energy from Fuel with Electric Energy

HEV w/o Engine
Downsizing

Car average
before - after

Cycle Mean /
Acceleration
-
A
) Note: Electric Energy Replaces ~ 19%
Cruise gy Rep °
/ of Useful Energy Requirement (slide 10)
Powered
< Deceleration

B Cumulative Mode Share of Useful Energy
Unpowered
Deceleration EMode Share of Useful Energy Requirement

B Useful energy divided by fuel use in category
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Example — Energy Attributes by Mode for Mid-Size Car for UDDS-LDV
Driving Cycle: No Engine Downsizing (Achieves 22% Efficiency: Peak is 33%)

Priority of use of battery energy —
from least to most efficient mode

\. Vehicle Stop
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Engine Substitution: Extreme Downsizing Flattens
The Engine Efficiency Curve vs. Speed and Moves the
Curve Closer to the Peak. DI Diesel Causes a Jump vs. ICE
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Rousseau et al’'s EVS-21 R&D Implies Near Constant
Engine Efficiencies Are Achieved by “Full” HEVs
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Even Extreme Downsizing in a Conventional Powertrain
Does Not Achieve Flat Engine Efficiencies vs. Cycle Speed

Note that there is much less remaining efficiency to “squeeze out” by means of hybrid electric energy in the C8CT

Implications of last few slides is that both efficiency enhancing control strategy and engine downsizing

are necessary to obtain flat hybrid vehicle engine efficiency near the peak for all cycle speeds.
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The Passenger Car Has Five Ways to Increase
Efficiency When Hybridized; The C8CT Only Two.

Advanced Diesel [ES3]

Opportunity Associated Car C8CT
with Hybridization Truck
Engine (Energy) Replacement X X
(Electric for Tractive & Accessory

Energy) [ER]

Efficiency Enhancement X X
(Control Strategy) [EE] (less effective)
Engine Substitution — X Done
Downsizing [ES1]

Engine Substitution - Improved Sl X Not
Technology (Atkinson) [ESZ] Applicable
Engine Substitution - Switch to X Done
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C8CT’s Have Less HEV Potential on a Given Cycle
and are Used on Unfavorable Cycles

— C8CT Speeds —p
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Potential Benefits of Hybridization of C8CTs are
Far Lower than for Front Wheel Drive Cars

« C8CTs are used on high speed, limited access highways.
Stop/start is infrequent. Share of kinetic energy is small

 EXtreme engine downsizing is already used by C8CTs
 Highly efficient diesel engines are already used by C8CTs
« Two points discussed in the paper, not in the presentation

— Generator-motors on two driven axles (of five) for
C8CTs can probably accomplish a much smaller share
of regenerative braking

— kW ratings of generators with comparable ability (vs.
car) to recover braking energy would be very large
relative to the kW ratings of engines presently in C8CTs

Thus: Spin-off of on-highway fuel saving benefits from light
duty hybrid powertrain R&D to C8CTs will be small.
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