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B PHEV Sizing Based on UDDS for 10, 20 40 AER.
H Control Strategy Options when Engine is ON

B \What is the Maximum Share of the Standard Drive
Cycle than can be Run in EV?

B What is the Share of the Standard Drive Cycle than
can be Run in EV when Engine is Used at Best
Efficiency?

B PHEV Sizing Based on Various Driving Cycles.




PSAT Modeling Assumptions
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Pre-transmission parallel HEV configuration
J— ) ——
—]—t X R N } Parameter Unit | Midsize Car
—l_ 3 Glider Mass kg 990
S i Frontal Area m?2 2.1
Drag Coefficient 0.31
Parameter Unit Value Wheel Radius m 0.317
0-60mph S 9+/-0.1 Rolling Resistance 0.008
0—30mph S 3
Grade at 60 mph % 6
Maximum Speed mph > 100
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Vehicle Sized to Meet Requirements

Vehicle Assumptions Associated
' 1 Requirements
r Motor Power ‘ Drive Cycle in
\ J EV Mode
( ‘ N
Battery Power Perfo:
. J IVM-60 mph
Engine Power Grade:
- J 60 mph 6% grade
Battery Energy Range
No <>Convergence

l Yes




Component Sizing on UDDS
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B Battery power slightly increases due to vehicle mass
B Battery capacity changed to maintain acceptable battery pack
voltage (~200V)




Cycle Characteristics . SC03, LA92 and
USO06 are More Aggressive
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H Control Strategy Options when Engine is ON
O




Two PHEV Controls Were Considered

AP P —Puc i o B Engine Minimum Assist .
—_ — - PGB—'“ Engine is turned on when Motor
‘ Pegne = AP PMC—OL“ torque reaches its maximum power
—  Eng_out curve. Engine provides the delta
Pc_wax power between required power at

— = Peng_sest e the gearbox input and maximum
motor power

_p B Engine Assist at Best Efficiency :
- Engine is turned on when Motor
°°°°°°°°°°° power reaches its maximum power
curve. The engine operates at the
best efficiency region. The surplus

power from the engine is used to
I Puor = AP charge the battery.
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B \What is the Maximum Share of the Standard Drive
Cycle than can be Run in EV?




Charge Depleting (CD) Capability Decreases as
Drive Cycle Aggressiveness Increases
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Engine Used Only When Electric Machine
ReaCheS |tS |_|m|t .... Maximum Power Required

at Gearbox Input for UDDS (~67.4kW)
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Energy Consumption of Engine Increases as the
Aggressiveness of Cycle Increases

HWFET NEDC

Japan1015

309.6, 100%

301.8, 100% 313.2, 100% 317.0, 100%

LA92 sco3 uso6

BEESS

80.2, 15%
= Engine

406.0, 99% 400.7, 95% 465.6, 85%
Avg. Engine
llllllllllllllllllllllll> Efficiency~
24.6%

Engine Usage increases as the aggressive increases
Engine Minimum
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B What is the Share of the Standard Drive Cycle than
can be Run in EV when Engine is Used at Best
Efficiency?




How does Engine Assist at Best Efficiency
Control Strategy Affects Energy Consumption?

Engine Hot Efficiency Map
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Engine Assist at Best Efficiency Increases
AER for Aggressive Cycles
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Energy Consumption of Engine Increases as

NEDC

Japan1015 HWFET
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B PHEV Sizing Based on Various Driving Cycles.




Its Power

Increases With Cycle Aggressiveness

When Battery Sized for Each Cycle

Engine Peak Power
B ESS Peak Power

Motor Peak Power
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Sizing based on Each Driving Cycle Decreases
Energy Consumption for Aggressive Cycles

600 — e
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Conclusion

B The choice of driving cycles influences PHEV design
decisions.

M All standard drive cycles considered are less aggressive
than real-world driving conditions.

M All electric operation can be achieved on aggressive drive
cycles with small additional battery power (10 to 15 kW)
compared to the UDDS. However, considering Li-ion
technology, available power might not be an issue.

B Should the batteries be designed on UDDS to satisfy
CARB requirements when it is not representative of real-
world driving conditions?
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