
EVS24 
Stavanger, Norway, May 13-16, 2009 

Evaluation of PHEVs Fuel Efficiency and Cost Using 
Monte Carlo Analysis 

Gregoire Faron, Sylvain Pagerit, Aymeric Rousseau 

Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 6064, USA, arousseau@anl.gov 

Abstract 

Plug-in Hybrid Electric Vehicles (PHEVs) offer a great opportunity to significantly reduce petroleum 

consumption.  The potential fuel displacement is influenced by several parameters, including powertrain 

configuration, component technology, drive cycle, distance… The objective of this paper is to evaluate the 

impact of component assumptions on fuel efficiency using Monte Carlo analysis.  When providing 

simulation results, researchers agree that a single value cannot be used due to large amount of uncertainties. 

In previous papers, we have used triangular distribution, but assuming that all inputs were correlated lead to 

improper results. Monte Carlo allows users to properly evaluate uncertainties while taking dependencies 

into account. To do so, uncertainties are defined for several inputs, including efficiency, mass and cost. For 

each assumption, an uncertainty distribution will be defined to evaluate the fuel efficiency and cost of a 

particular vehicle with a determined probability. 
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1 Introduction 
Advanced powertains, including hybrid electric 
vehicles (HEVs) and plug-in HEVs (PHEVs), 
offer the potential to significantly reduce 
petroleum consumption. To evaluate the different 
options in a timely manner, the use of simulation 
tools has become a necessity.  Argonne National 
Laboratory, working with automotive 
manufacturers, has developed the Powertrain 
System Analysis Toolkit (PSAT) to perform this 
task.  Based primarily on Matlab, Simulink and 
StateFlow, the software allows a quick 
evaluation of different technologies.  PSAT is the 
default vehicle simulation tool to support both 
the FreedomCAR and Fuels Parternship and 21 
Century Truck Partnership (21 CTP). 
PSAT current version behaves like a multi-
input/multi-output deterministic non-linear 
algorithm; it generates a set of deterministic 

outputs from a set of deterministic inputs. The 
purpose of our study is to evaluate the benefits of 
PSAT handling stochastic inputs. 
 
The initiative of the Risk Analysis Program started 
by the US Department of Energy motivated this 
study. When using PSAT as a design and decision 
tool, users legitimately expect the most accurate 
and complete results possible. When inputs have 
uncertainties, deterministic modeling cannot lead 
to correct simulation results. When dealing with 
uncertain inputs, the inputs must be stochastically 
modeled; as a result the generated outputs are also 
stochastic. Consequently, it becomes possible to 
compute quantities such as the most likely values 
to occur and some interval of confidence, which 
helps better describe and understand the simulation 
results. 
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Contrary to deterministic inputs, uncertain inputs 
are modeled by probability density function 
(PDF). Input PDF characteristics (shape, mean, 
variance, mode…) are established based on 
expert judgments and theoretical knowledge. The 
goal is to study how uncertainty propagates 
through PSAT algorithms, and to figure out how 
this uncertainty on the inputs finally impacts the 
algorithm outputs. 

2 Monte Carlo Methodology 
Overview 

 
Monte Carlo methods are families of 
computational algorithms that rely on repeated 
random sampling to compute their results. These 
algorithms are used when it is infeasible or 
impossible to compute an exact result with a 
deterministic algorithm. In our case, PSAT 
algorithms are too complex for us to compute the 
outputs generated by uncertain inputs. As a 
result, instead of simulating directly using 
uncertain inputs, we will randomly sample the 
uncertain inputs, generate sets of values from all 
the inputs samples, and then simulate each set 
separately. At the end, the simulation results 
obtained for each simulated set are aggregated, 
which gives the uncertain output values. 
 
To perform a Monte Carlo simulation, we first 
need to choose and model the uncertain inputs. 
For this study, the uniform, Gaussian, and 
triangular PDF shapes have been implemented. 
 
The second step consists in selecting the 
sampling method and the number of points to be 
used for the simulation. Each sampling method 
has its own convergence rate for a given problem 
and algorithm. As a result, we need to adapt 
sampling methods and number of points in order 
to reach the expected accuracy. After sampling 
the uncertain inputs, some correlations eventually 
can be added using either the Iman and Conover 
procedure or a Copula based method.  
 
The completion of the previous steps leads to the 
definition of all the points to be simulated, from 
which we define the vehicles to be run in PSAT. 
The coordinates of a point in the hypercube 
define a vehicle’s uncertain input values. 
 
Finally, these vehicles are simulated in PSAT, 
and their results are collected and plotted for 
analysis.  The methodology is summarized in 

Figure 1. The main steps are described in greater 
details in further paragraphs. 
 

 
Figure 1: Summary of Monte Carlo simulation main 

steps 

2.1 Input Sampling 

A Monte Carlo simulation starts by sampling the 
input’s PDF. This first step has a major impact on 
the simulation result, because it determines the set 
of values representing the uncertain inputs. These 
samples need to represent the full range of the 
PDF, but also need to highlight high probability 
areas more than low ones. Cumulative Distribution 
Function (CDF) inversion is the most common 
method used to sample PDF. 

The general idea of CDF inversion is that by 
inverting the uncertain input CDF over uniformly 
distributed points, we obtain a good sample of the 
PDF. 
 
The precision of this method relies mainly on the 
uniform sequence inverted over the CDF. 
Consequently, our main concern will be to define 
the best sequence of point to be inversed over the 
joint CDF. In the next section (sampling methods), 
we will discuss different ways of generating these 
uniformly distributed points. 
 
The main idea behind Monte Carlo simulation is to 
sample a K-dimensional hypercube with N points, 
i.e.: to generate an N-point uniform sequence into 
a K dimensional unit hypercube. Then, inverse the 
join CDF over the sequence of points from the 
hypercube, and as a result obtain the samples for 
each uncertain inputs PDF.   
 
Figure 2 shows a sample for triangular distribution. 
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Figure 2: Triangular PDF sample values histogram 

2.2 Sampling Methods 

2.2.1 Monte Carlo Sampling 

The most popular sampling method is called 
Monte Carlo sampling (MC). This method uses 
pseudo random numbers (between 0 and 1) to 
approximate a uniform distribution. Monte Carlo 
sampling convergence rate is on average 

)( 2
1

NO  (central theorem consequence). This 
bound does not depend on the number of inputs 
K, unlike for the other methods. The 
independence in between a number of uncertain 
inputs and a convergence rate makes Monte 
Carlo sampling a very useful and efficient 
sampling method when dealing with large 
number of uncertain inputs.  However, as the 
bound is probabilistic, there is no way to build 
the sequence reaching the optimal bound 
(Papageourgiou and Wasilkowski in [1]). 
 
According to the literature, the convergence rate 
depends more on the equidistribution of the 
sample over [0 1], than on the randomness 
(Morgan and Henrion in [2]). Because uniformity 
is the main aspect, we will introduce other 
sampling methods that focus on the sample’s 
uniformity. 

2.2.2 Hypercube sampling (Iman and 
Shortencartier in [3]) 

One method of creating more uniform samples 
(i.e.: to get a faster convergence rate) is to use 
stratified sample methods, such as Latin 
Hypercube Sampling (LHS) or Median Latin 
hypercube sampling (MLHS). In LHS, the range 
of each uncertain input Xi is sub-divided into 
non-overlapping intervals of equal probability. 
Then, one value from each interval is selected at 
random with respect to the probability 
distribution in the interval. In MLHS, this value 
is the mid-point of the interval. The N values 
thus obtained for X1 are paired in a random 
manner (i.e., equally likely combinations) with N 
values of X2. These N values are then combined 

with N values of X3 to form N-triplets, and so on, 
until N k-tuplets are formed.  MLHS usually gives 
better results than LHS. However, it fails 
sometimes with periodic functions with a period 
similar to the size of  the equiprobable intervals. 
There are no periodical functions in PSAT, so we 
will generally use MLHS more than LHS. 
 
Hypercube sampling methods only provide 
probabilistic bounds. Moreover, hypercube 
methods were designed to provide good uniformity 
in one dimension. Thus, it does not produce perfect 
random uniformity in multidimensional 
configurations. 
 
As shown in [4] and [5], and assuming PSAT 
simulation algorithm is monotonic in each of the 
inputs, we can easily compare MC sampling to 
LHS. Considering forecast sample means, 
variances and percentiles as estimators, we can 
show that these estimator variances are lower for 
LHS than for MC sampling.  In [5], [6] and [7] we 
see that this result is confirmed by the 
experiments. LHS converges faster than MC for a 
low number of inputs (up to 15), and in the worst 
case LHS is not worse than MC.  

2.2.3 Quasi-Monte Carlo methods 

Quasi-Monte Carlo methods are based on low-
discrepancy sequences, which use optimal design 
schemes for placing N points on a k-dimensional 
hypercube. Unlike Monte Carlo Sampling and 
Latin Hypercube, the quasi-random sampling 
technique ensures that the sample sets show more 
uniformity of properties in multi-dimensions. 
There are several different low-discrepancy 
sequences (Hammersley, Sobol, Halton, Faure,…), 
well-described in the literature, that can be used 
for quasi-Monte Carlo simulation. Here we choose 
to use Hammersley and Halton sequences.  
 
Using a quasi-Monte Carlo simulation is much 
more complicated than using Monte Carlo 
methods. These difficulties come from the lack of 
theoretical results that allow us to evaluate the 
quasi-Monte Carlo method’s accuracy.  
 
This accuracy depends mainly on the simulation 
algorithm’s characteristics (such as it variations for 
example) and the number of dimensions of the 
problem. As a result, there are no general results 
concerning the convergence rate estimation. 
However, upper and lower bound rates of 
convergence can be expressed; we will try to take 
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advantage of those bounds to get theoretical 
information on the precision. 
 
As shown in [8], a lower bound rate of 
convergence can be derived using the Koksma-
Hlwaka inequality. This inequality expresses an 
absolute bound on the accuracy of quasi-random 
integration (in our case simulation is equivalent 
to integration). This bound is proportional to the 
discrepancy of the sequence used (in our case the 
Hammersley sequence). Knowing the 
Hammersley sequence discrepancy, we can 
derive the lower bound of convergence: 

)
)log(

(
N

N
O

K

. 
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According to Morokoff in [9] the optimal rate of 
convergence is faster than Monte Carlo 
sampling. In this case the upper bound rate of 

convergence is: . )( 1NO

 
Figure 3:  Error bounds comparison  

 
Figure 3 illustrates the theoretical convergence 
rate differences between the Monte Carlo and 
quasi-Monte Carlo methods (based on our first 
experimental results). As one notices, the upper 
bound for quasi-Monte Carlo performs always 
better than Monte Carlo. On the other hand, the 

lower bound seems wide and only performs better 
for a few uncertain inputs and a large number of 
points.  
 
As illustrated by the diagram above, using quasi-
Monte Carlo method is tricky – it is a priori 
difficult to know whether or not it is worth using it 
compared to LHS. However, as expressed in [7], 
[8], [10] and [11], it is often worth using the quasi-
Monte Carlo for low numbers of uncertain inputs. 

2.3 Sampling Method Comparison 

2.3.1 Convergence comparison 

Our first purpose is to make sure all different 
sampling methods implemented in PSAT lead to 
the same results. We first simulate different 
vehicles, with different number of uncertain inputs 
and sampling methods. Our purpose is to verify 
that in some representative cases, our algorithm 
converges to the right output PDF. All the 
sampling methods were simulated for up to 1000 
points, which is sufficient to get an output PDF 
with constant means and variances. 
 
We then compared the results obtained with the 
four different sampling methods (all methods are 
independent from one to the other). If the four 
methods converge around the same value, there are 
great chances that this value is the right one.  
 
Figure 4 shows the result from an uncertain input 
sampling (i.e.: equivalent to the Monte Carlo 
simulation of one input through the identity 
function). It is a good indicator of the sampling 
method efficiencies since the quality of the input 
sampling makes most of the Monte Carlo 
simulation efficiency. Moreover we can derive the 
input theoretical mean and variance, and then 
derive the exact convergence rate of each sampling 
method. 

 



 
Figure 4: Mean and variance of a sampled Gaussian input PDF, for different sampling method and number of points 

 
All the methods converge to the theoretical value 
(straight black line). On the second diagram, we 
can see that for a large number of points, 
approximately over 600, results from all the 
methods are bounded in the interval: theoretical 
value +/- 0.5 %. A 100-point sample gives at 
least a five-percent accuracy on mean and 
variance for each method. 
 

It is clear that the Hammersley sequence gives the 
best results, a five-percent error with 30 points, 
less than 0.1% error for more than 600 points. The 
second best method is MLHS. 
 
Figure 5 illustrates the results of the PSAT fuel 
consumption simulation, using Monte Carlo with 5 
uncertain inputs. In this case, we derived 
theoretically the 95% confidence interval on the 
forecast mean (black dashed line).  

 

 
Figure 5: Mean and variance of a forecast PDF, for different sampling method and number of points 
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In this case, it is not possible to figure out the 
PDF mean and variance theoretical values. 
However, we can notice that all methods 
converge to about the same value. 
 
Hammersley sequence results are not relevant. 
This is due to the fact that when generating a 
Hammersley sequence for N points, the N points 
have a uniform repartition.  However, any subset 
of points does not. This aspect and the fact that 
quasi-random sequences are not stochastic make 
quasi-Monte Carlo hard to validate. However, we 
can notice that it converges to the same value as 
the others do. 
 
Similar simulations and observations were 
carried out for different vehicles types and 
different numbers of uncertain inputs. In every 
case, the Monte Carlo simulation led to similar 
observations as above. Based on these results, we 
will assume that each sampling method 
converges to the right output PDF, under the 
following assumptions. 

 Less than 35 uncertain inputs 
 At least 5% accuracy with 1000 points 

 

2.3.2 Sampling method convergence rate 

Being sure that all the sampling methods converge 
to the right output PDF, we now need to study the 
convergence rates particular to each sampling 
method. 
 
Monte Carlo simulation is a stochastic process, 
which means that running the algorithm multiple 
times with the exact same assumptions leads to 
different results (because the point sequences 
generated are different from one run to another).  
 
As a result, we need to find the number of points 
leading to an acceptable error interval around the 
simulation results. To do so, we choose a vehicle 
and define a set of uncertain inputs. We then run 
multiple Monte Carlo simulations without 
modifying the predefined assumptions. 
 
Figure 6 illustrates this method. In this example, 
we simulated five times a hybrid vehicle with 6 
uncertain inputs, using MLHS. The tags indicate 
estimator variances for 50, 100, 200 and 1000 
points.  

 

 
 

Figure 6: MLHS convergence rate study 
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The process described above was carried out for 
all the stochastic sampling methods (all the 
methods except the Hammersley sampling). 
We then derived the estimator’s variances in 
function of the number of points and compared 
the results obtained with the different sampling 

methods. The sampling methods in which the 
estimator’s variances go to zero the fastest are the 
best. Figure 7 illustrates this comparison between 
the different sampling methods. This result was 
obtained simulating six uncertain inputs with a 
hybrid vehicle. 
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Figure 7: Sampling method convergence rate comparison 
 
In the above example, MLHS converges the 
fastest for the output mean. The sampling method 
does not have a significant impact on the output 
variance.  
 
Based on these diagrams, we can derive the 
number of points required for each sampling 
method to reach a particular accuracy. To be 
more specific, we define the expected precision 
as an estimator variance, and determine the 
number of points providing this variance for each 
sampling method. 
 
This method cannot be applied to quasi-Monte 
Carlo simulation, because the point sequences 
used are not stochastic. However, individual 
simulations allow comparisons of non-stochastic 
methods with conventional Monte Carlo 
methods. According to the literature and our 

experimental results, we can state that quasiMonte 
Carlo simulations give the best results for a low 
number of uncertain inputs [12]. 

2.4 Determining the sampling method 
This validation study gave us a better 
understanding of our algorithm behaviour. Table 1 
summarizes how to select a pair of uncertain 
inputs/number of samples, depending on the 
number of uncertain inputs. The values given 
below are based on the experimentations run 
during the validation process. Some additional 
simulations need to be run in order to get a more 
accurate understanding of the algorithm’s 
behaviour.  The impact of aspects such as the type 
of vehicle simulated, the cycle considered, or the 
correlations structure should also be considered. 
 

 
 
 

 
 

 



Table 1: Monte Carlo simulation assumptions to be used for different number of inputs 
 

 
 
 
 
 
 
 

3 Simulation Assumptions 
 
The vehicle simulated is a midsize car Plug-in 
Hybrid Electric Vehicle with a battery sized to 
follow the Urban Dynamometer Driving 
Schedule (UDDS) drive cycle for 10 miles in 
electric mode.  The configuration considered is 
an input split, similar to the one used by Ford and 
Toyota.  The engine power is sized to sustain a 
6% grade at 65 mph (~100 km/h) without any 
support from the battery. The main 
characteristics are defined in Table 2. 

Table 2: Main Vehicle Characteristics 

Glider mass (kg) 990 
Frontal area (m2) 2.2 
Coefficient of drag 0.29 
Wheel radius (m) 0.317 
Tire rolling resistance 0.008 
 
For each set of assumptions considered, a 
specific vehicle is defined to meet the vehicle 
technical specifications (performance, 
gradeability…).  
 
The control strategy used in the simulation is 
based on a blended approach, where the engine is 
started based on a power threshold dependent 
upon the battery state of charge (SOC).  The 
engine is then used close to its best efficiency 
curve. As a consequence, the battery is recharged 
and the charge depleting range increased. 
The objective of the following chapters is to 
evaluate the benefits of using Monte Carlo 
approach compared to the initial method based 
on using only three points. In the case of the 

triangular distribution based on three points, a 
vehicle was defined for each case, with the low 
case being composed of all the low case 
assumptions, the middle case of all the middle 
assumptions and the high case of all the high 
assumptions. Using that approach, one expects to 
have a larger uncertainty range. 
 
The output from Monte Carlo will be first 
discussed and then compared with the three points 
approach. 
 
Twelve inputs were considered in the Monte Carlo 
simulation to assess the uncertainty of the vehicle 
fuel efficiency: 

■ Glider (body & chassis) mass 
■ Frontal area 
■ Coefficient drag 
■ Rolling resistance 
■ Electric motor controller #1 power density 
■ Electric motor #1 power density 
■ Electric motor #1 efficiency 
■ Electric motor controller #2 power density 
■ Electric motor #2 power density 
■ Electric motor #2 efficiency  
■ Engine efficiency  
■ Electrical power 

 
The cost estimation of the vehicle powertain was 
also based on several inputs, including component 
powers (engine, electric machine, battery…), 
energy, glider mass… 
 
Due to the large number of uncertain inputs, the 
MHLS was used. One thousand points were 
simulated to ensure proper convergence.  Figure 8 
shows the overall process. 
 

 

Number of 
uncertain inputs n 

Sampling method Number of 
points 

Correlation 
method 

n<12 Hammersley 100 Cholesky 
12<=n<=25 MLHS (or LHS) 150 Cholesky 

n>25 Monte Carlo Sampling 200 Copula 
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Figure 8: Vehicle Simulation Process 

 

4 Simulation Results 
 
After the simulation, we collected the considered 
outputs samples (fuel consumption and cost), and 
displayed their distribution.  These histograms 
provide graphical representations of the fuel 

consumption and cost of PDF as well as their 
mode and their 80%  confidence interval (10%-
90%). 
 
Based on the output samples we also computed a 
kernel estimation of the PDF. 

  

 
Figure 9: Histogram of the fuel economy and electrical consumption forecasts



 
Figure 9 illustrates the fuel economy and 
electrical consumption forecasts. The center line 
represents the mode of the output PDF, which 
represents the most likely value to occur 
considering the uncertainty of the inputs. The 
lines at both ends represent the 10% and 90% 
distribution percentiles. These 2 lines define an 
80% confidence interval on the result (i.e. there is 
80 % probability for the output result to occur in 
this interval). 
 
The output PDF obtained here are multi-mode. 
This is due to the fact that for a PHEV the fuel 
economy and electrical consumption are non-
monotonic over the uncertain inputs. Each local 
mode represents the most likely value to occur, 
for a given number of internal combustion engine 
(ICE) starts. This PDF provides additional 

information on the vehicle’s general behavior. 
However, it requires more points to be simulated 
to get the expected accuracy for a given number 
of ICE starts. Moreover, given this multi mode 
shape it is very hard to get a PDF estimation of 
the result. 
 
Figure 10 illustrates the cost forecast. Contrary to 
the forecast considered above, the cost forecast is 
single mode, which makes its interpretation 
easier.  
 
Based on this single mode forecast we can derive 
a Kernel estimation of the cost PDF. Figure 11 
illustrates the cost PDF estimation using Kernel 
estimation. This estimation provides a full and 
accurate description of the output PDF. 
 

 

 
Figure 10: Cost Forecasts Histogram 

 
Figure 11: Cost PDF Estimation 
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5 Comparison between Monte 
Carlo and Three Points 
Approach 

Figure 12 compares the fuel economy and 
electrical consumption obtained from the Monte 
Carlo analysis with the three values (all low, all 
medium, all high together). 
 

As expected the range between the min and the 
max values is smaller using Monte Carlo.  While 
the 3 points study fuel economy ranges from 53 to 
61 mpg with a mode of 57 mpg, Monte Carlo 
provides a mode of 55 mpg within 54 and 57.5 
mpg with an 80% confidence interval. 
 
Similar conclusions can be drawn from the 
electrical consumption where a smaller range is 
achieved. The 3 points approach provides extreme 
cases 

 

3 Points

Figure 12: Comparison Between Three Points and Monte Carlo for Fuel and Electrical Consumptions 
 

6 Conclusion 
By allowing the introduction of uncertainty in our 
algorithm inputs, the Monte Carlo method 
increases the amount of information useful to 
describe a vehicle’s possible behaviors. The major 
improvement concerns the introduction of the risk 
notion associated with each result. Instead of 
providing a single forecast value, Monte Carlo 
simulation provides the probability of occurrences 
associated with every possible output value. As a 
result, forecasts are more fully and accurately 

described and confidence intervals can be derived 
for each output. 
 
A Monte Carlo library containing all the essential 
features required to carry out accurate studies of 
the uncertainty propagation has been implemented 
into PSAT and validated. 
 
Different sampling methods were compared for 
several powertrain configurations. For each 
option, the most appropriate number of samples 
was defined. 
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The results from Monte Carlo based on a midsize 
PHEV were defined, providing a mode for both 
fuel economy and cost within a certain confidence 
interval.  The approach was then compared with 
the existing 3 points option. Results demonstrated 
that Monte Carlo provided a narrower range. 
 
However, increasing the amount of information 
available on the results has a computational cost. 
The experiments carried out so far led us to a first 
evaluation of the number of points required to 
simulate. This number of points varies from 100 
to 200 points, depending on the number of 
uncertain inputs considered. While computational 
time varies from each configuration, the average 
time required to simulate a PHEV on all these 
points is 150 minutes. 
 
To conclude, Monte Carlo analysis provides 
useful insight for the uncertainty of specific 
technologies. Due to the requirements for the 
computations, this method is currently only 
applicable to studies with limited number of 
vehicles or powertrain configurations. 

Acknowledgments 
This work was supported by DOE’s FreedomCAR 
and Vehicle Technology Office under the 
direction of Lee Slezak. The submitted 
manuscript has been created by UChicago 
Argonne, LLC, Operator of Argonne National 
Laboratory (“Argonne”). Argonne, a U.S. 
Department of Energy Office of Science 
laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains 
for itself, and others acting on its behalf, a paid-up 
nonexclusive, irrevocable worldwide license in 
said article to reproduce, prepare derivative 
works, distribute copies to the public, and perform 
publicly and display publicly, by or on behalf of 
the Government. 

References 
1- A. Papageorgiou and G.W. Wasilkowski, On 
average case complexity of multivariate 
problems,” Journal of Complexity, vol. 6, pp. 1–
6, 1990 
2- Morgan, M. G., and M. Henrion. Uncertainty -- 
a guide to dealing with uncertainty in quantitative 
risk and policy analysis. Cambridge: Cambridge 
University Press, 1990. 
3- Iman, R.L. and M.J. Shortencarier.. User's 
Guide for the Generation of Latin Hypercube and 
Random Samples for Use with Computer Models, 

querque, NM: Sandia National laboratories. 
NUREG/CR-3624, SAND83-2365. 1984 
4- McKay, M.D., R.J. Beckman, and W.J. 
Conover. A Comparison of Three Methods for 
Selecting Values of Input Variables in the 
Analysis of Output from a Computer Code, 
Technometrics. Vol. 21, no. 2, pp. 239-245. 1979. 
5- J. C. Helton and F. J. Davis, Latin Hypercube 
Sampling and the Propagation of uncertainty in 
Analyses of Complex Systems, Sandia National 
laboratories, 2002. 
6- L. Chrisman, M. Henrion, and R. Morgan, 
Analytica user guide, release 4.0, 2007 
7- Urmila M. Diwekar, A Novel Sampling 
Approach to Combinatorial Optimization Under 
Uncertainty, Computational Optimization and 
Applications, 24, 335–371, 2003. 
8- H. Niederreiter. Random Number Generation 
and Quasi-Monte Carlo Methods, SIAM, CBMS 
63, 1992. 
9- Morokoff, W.J. (1998): Generating Quasi-
Random Paths for Stochastic Processes, 
SIAM Review, vol.40, no 4, , pp. 765-788, 1998 
10- J.R. Kalgnanam and U.M. Diwekar, An 
efficient sampling technique for off-line quality 
control. Technometrics, vol. 39, no. 3, pp. 308–
319, 1997. 
11- William C. Snyder, Accuracy estimation for 
quasi-Monte Carlo simulations, Mathematics and 
Computers in Simulation 54, 131–143, 2000. 
12- Helton, J.C., Uncertainty and Sensitivity 
Analysis Techniques for Use in performance 
Assessment for Radioactive Waste Disposal, 
Reliability Engineering and System Safety. Vol. 
42, no. 2-3, p. 327-367, 1993. 

Authors 

 

Gregoire Faron, Research Aid, Ecole 
de Mines de Nantes 
Gregoire is is currently completing a 
Master of Science in Electrical and 
Computer Engineering at the Georgia 
Institute of Technology. He lead the 
development and the implementation 
of MonteCarlo in PSAT as part of his 
final training period to obtain his 
Master of Science 
 

 

Sylvain Pagerit, Research Engineer, 
Argonne National Laboratory, 9700 
South Cass Avenue, Argonne, IL 
60439-4815, USA, spagerit@anl.gov 

Sylvain received a Master of Science 
in Industrial Engineering from the 
Ecole des Mines de Nantes, France, in 
2000, as well as a Master of Science in 

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  12



Electrical Engineering from the 
Georgia Institute of Technology, 
Atlanta, in 2001. He is currently 
working on ANL’s Vehicle modelling 
and simulation group. 
 

 
 
 

Aymeric Rousseau, Program Manager, 
Argonne National Laboratory, 9700 
South Cass Avenue, Argonne, IL 
60439-4815, USA, 
arousseau@anl.gov@anl.gov 
Aymeric received his Master of 
Science in Industrial System from 
EIGSI in La Rochelle, France in 1997. 
He is currently leading ANL’s Vehicle 
modelling and simulation group. 

 

 
 
APPENDIX – Monte Carlo Main Assumptions 
 

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  13

mailto:arousseau@anl.gov@anl.gov


EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  14

DISTRIBUTION  
Triangular Gaussian 

Parameter Unit Min Max Mode Mean Variance 
Glider Mass Kg 886 995 940.5   
Motor Controller #1 
Power Density 

W/kg 4900 12600 6000   

Electric Motor  #1 
Power Density 

W/kg 1085 1300 1255   

Motor Controller #2 
Power Density 

W/kg 4900 12600 6000   

Electric Motor  #2 
Power Density 

W/kg 1085 1300 1255   

Frontal Area m2    2.222 0.0172 
Coefficient Drag  0.24 0.31 0.27   
Rolling Resistance  0.0072 0.01 0.0078   
IC Engine Efficiency %    38 0.39 
Electric Drive #1 
Efficiency 

%    95.5 0.39 

Electric Drive #2 
Efficiency 

%    95.5 0.39 

Electrical Accessory 
Power 

W    210 7.803 

 
Wheel Radius : 0.317 m 
Total Battery Energy : 8 kWh 
Battery Voltage : 194.4 V 
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