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Fuel Cell Vehicle Fuel Economy Optimization

• Study Scope
• Hybridization Degree
• Energy Storage Technology
• Control Strategy
• Perspectives
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FreedomCAR FCV Energy Storage Proposed 
Goals Spring 2003

FreedomCAR Goals  Low Power High Power 
Characteristics Units Energy Storage Energy Storage 

Pulse Discharge Power (10s) kW 25 50 
Max Regen Pulse (5s) kW 30 60 
Total Available Energy kWh 1.5 3 
Round Trip Efficiency % >90 >90 
Cycle Life Cyc. TBD (15 year life equiv.) TBD (15 year life equiv.)
Cold-start at -30°C (TBD kW for TBD min.) kW 5 5 
Calendar Life Yrs 15 15 
Max Weight kg 40 65 
Max Volume liters 32 50 
Production Price @ 100k units/yr $ 500 1,000 
Maximum Operating Voltage Vdc </= 440 max </= 440 max 
Minimum Operating Voltage Vdc  >/= 0.5 x Vmax  >/= 0.5 x Vmax 
Maximum Self Discharge Wh/d 50 50 
Operating Temperature °C -30 to +52 -30 to +52 
Survival Temperature °C  -46 to +66  -46 to +66 
    



4

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Structure of the Study
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Fuel Cell HEV Configuration

DC Link
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Major Assumptions
• Vehicle and Performance

- Mid-size SUV (Explorer, Durango, Blazer)
- Target 0-60 mph acceleration in 10.2 s 
- 55 mph at grade of 6.5% continuous (a least 20 minutes) 
- Top speed of 100 mph

• Fuel Cell System Requirements 
- Fuel cell should be sized to provide a least power for top speed and grade 

performance
- FCS must have 1-s transient response time for 10% to 90% power.
- FCS should reach maximum power in 15 s for cold start from 20C ambient 

temperature and in 30 s for cold start from -20C ambient temperature 
• Power Requirements (based on PSAT simulations)

- 160kW peak power for 0-60 mph acceleration
- Minimum fuel cell power of 80kW for achieving speed at 6.5% grade

• Default: tight SOC control, lithium-ion, FUDS
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Detailed Models Necessary for Realistic 
Behavior

Fuel Cell System Efficiency 
is Not a Monotonic Function 

of Power Demand
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Design-Specific FC System Modeling Required 
to Assess Component Impact
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Small Differences in Components Can Have 
Large System Implications

Power Demand (kW)
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Design-Specific Models Required for 
Realistic FC Cycle Efficiency

61

61.5

62

62.5

63

63.5

64

64.5

Fu
el

 C
el

l S
ys

te
m

 C
yc

le
 E

ffi
ci

en
cy

 (%
)

FC HEV 140kW FC HEV 120kW FC HEV 100kW FC HEV 80kW

Fu
el

 C
el

l S
ys

te
m

 C
yc

le
 E

ff
ic

ie
nc

y 
(%

)

FUDS Cycle



11

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Fuel Cell Vehicle Fuel Economy Optimization
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• Hybridization Degree
• Energy Storage Technology
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Increase in Hybridization Degree Can Lead to 
Decrease in Fuel Economy

*Hybridization Degree
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Hybridization Results

• Key benefit of hybridization is fuel economy 
increase for FUDS thanks to regenerative braking

• Increasing the hybridization degree is interesting 
until the additional gain is nullified by the 
decrease in fuel cell efficiency

For Li-ion, it is better to limit the ESS power to 40kW 
to preserve FC system efficiency while capturing 
most available regen energy
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Fuel Cell Vehicle Fuel Economy Optimization

• Study Scope
• Hybridization Degree
• Energy Storage Technology
• Control Strategy
• Perspectives
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NiMH and Ultracap have lower specific power 
than Li-ion

The fuel economy penalty due to mass increase is lower for a low
hybridization degree 

Relative comparison of vehicle test mass for each energy storage 
technology (Reference Li-ion)
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NiMH and Ultracap allow better regenerative 
braking recovery at low hybridization degree

Small ess strategy ; SOCtarget = 0.5

FUDS Cycle - Comparison of regenerative braking energy recovered
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The SOC varies more for the Li-ion 6Ah, 
decreasing the maximum charge power
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Energy Storage Technology Results

• Optimum hybridization degree depends on 
energy storage technology

• Specific power and specific energy 
characteristics are key to optimum fuel economy

For Li-ion a higher hybridization degree is necessary 
while both NiMH and ultracapacitors achieve best 
results at very low hybridization degrees
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Fuel Cell Vehicle Fuel Economy Optimization

• Study Scope
• Hybridization Degree
• Energy Storage Technology
• Control Strategy
• Perspectives
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Default Control Strategy Maximizes Fuel Cell 
System Use
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Control Strategies Options Considered 

• Use the fuel cell as main power source
- SOCtarget = 0.7

- Min fuel cell power demand = 0 (Default Control)
- Min fuel cell power demand = 5kW 
- Min fuel cell power demand = 15kW

- SOCtarget = 0.5
- Min fuel cell power demand = 0
- Min fuel cell power demand = 15kW

• Use the battery as main power source
- SOCtarget = 0.7
- SOCtarget = 0.5

With min fuel cell power demand = Pwheel + P(SOC)
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Impact of fuel cell power min on battery power 
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Impact of fuel cell power min on battery SOC
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Increasing the min fuel cell power demand 
leads to fuel economy penalty

57.2
57.1

56.5

55

55.5

56

56.5

57

57.5

58

Fu
el

 E
co

no
m

y 
C

om
pa

ris
on

 (m
pg

)

0kW 5kW 15kW

Example of 80kW FC
57.2

57.1

56.5

55

55.5

56

56.5

57

57.5

58

Fu
el

 E
co

no
m

y 
C

om
pa

ris
on

 (m
pg

)

0kW 5kW 15kW

Example of 80kW FC



27

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Because the increase in regen energy is 
nullified by the decrease in fuel cell efficiency
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Summary Table – Example of 80kW fuel cell 
system (SOCtarget = 0.7)

57.714.9WhDifference
190618391818Wh

Fuel Cell 
Energy Loss

76100106Wh
Mech. Braking 

Energy Loss

15kW5kW0kWUnits
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Control Strategies Options Considered 

• Use the fuel cell as main power source
- SOCtarget = 0.7

- Min fuel cell power demand = 0 (Default Control)
- Min fuel cell power demand = 5kW 
- Min fuel cell power demand = 15kW

- SOCtarget = 0.5
- Min fuel cell power demand = 0
- Min fuel cell power demand = 15kW

• Use the battery as main power source
- SOCtarget = 0.7
- SOCtarget = 0.5

With min fuel cell power demand = Pwheel + P(SOC)
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Impact of target battery SOC on battery power 
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Control Strategies Options Considered 

• Use the fuel cell as main power source
- SOCtarget = 0.7

- Min fuel cell power demand = 0 (Default Control)
- Min fuel cell power demand = 5kW 
- Min fuel cell power demand = 15kW

- SOCtarget = 0.5
- Min fuel cell power demand = 0
- Min fuel cell power demand = 15kW

• Use the battery as main power source
- SOCtarget = 0.7
- SOCtarget = 0.5

With min fuel cell power demand = Pwheel + P(SOC)
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Control Strategy Results

• For the same control strategy, it is possible to 
increase losses by increasing the regenerative 
braking due to fuel cell efficiency 

• Rather than increasing the minimum fuel cell 
power demand, minimizing the target SOC is a 
better way to increase the regenerative braking

1 - Low SOC should be targeted to increase 
regen capture
2 – Optimum control strategy philosophy depends 
upon driving cycle: For FUDS, it is better not to use the 
battery too much, whereas it is the opposite for US06
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System Approach is Needed to Achieve 
Optimum Fuel Economy

• Key benefit of hybridization is fuel economy increase 
for FUDS thanks to regenerative braking

• Optimum hybridization degree is energy storage 
technology dependant

• Fuel cell system efficiency and regenerative braking 
trade-off is key to optimum fuel economy
- Increasing hybridization degree and SOC window can 

lower fuel economy
- Minimizing SOC target is a good way to increase the 

regenerative braking
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