
2011-01-0754

System Analysis Using Multiple Expert Tools

Ram V.Gopal, Aymeric Rousseau
Argonne National Laboratory

Copyright © 2011 SAE International

ABSTRACT

Many of today‟s advanced simulation tools are suitable for modeling specific systems; however, they provide rather limited support for
model building and management. Setting up a detailed vehicle simulation model requires more than writing down state equations and
running them on a computer. In this paper, we describe how modern software techniques can be used to support modeling and design
activities, with the objective of providing better system models more quickly by assembling these system models in a “plug-and-play”
architecture. Instead of developing detailed models specifically for Argonne National Laboratory‟s Autonomie modeling tool, we have
chosen to place emphasis on integrating and re-using the system models, regardless of the environment in which they were initially
developed. By way of example, this paper describes a vehicle model composed of a detailed engine model from GT Power, a
transmission from AMESim, and with vehicle dynamics from CarSim. The paper will explain the different options available for the
interface and how each of these options can be implemented. It will use a simple case study to show how the detailed expert simulation
models can be used with simpler Simulink models to address different vehicle design issues.

INTRODUCTION

One of the basic capabilities that an enterprise-wide modeling and simulation tool needs is to provide a framework for integrating
models developed in different languages/tools. Because different expert tools have distinct advantages for modeling specific
phenomena, numerous tools are used across companies, such as automotive original equipment manufacturers (OEMs). When these
models are available, nevertheless the attempt to integrate them into a single environment to build an accurate system model is very
onerous. As a result, most vehicle models used for analysis are usually based on steady-state look-up tables. The lack of a common
framework to link such expert models results in isolated pockets of model-rich design groups.

The open architecture of Autonomie [1, 2], a modeling tool developed by Argonne National Laboratory (Argonne) over the past four
years in collaboration with General Motors (GM), supports the rapid integration and analysis of powertrain/propulsion systems and
technologies for rapid technology sorting and evaluation of fuel economy improvement under dynamic/transient testing conditions.
The tool, developed in the MathWorks environment, is based on a forward-looking model architecture. Its plug-and-play architecture
provides a common framework in which expert tools can be linked to build detailed vehicle models. In this paper, we will explain how
Autonomie is used to act as the interface between models developed with expert tool by taking the GT-Power engine model, AMESim
transmission model, and CarSim vehicle dynamics models as examples.

THE NEED FOR DETAILED SYSTEM MODELS

Each type of model has its own advantages and disadvantages. While Simulink models based on simple look-up tables are easy to
develop and use, they lack the ability to simulate the details of the plant‟s physical interactions. As a result, simple plant models cannot
support control systems development.

More detailed models are also needed to evaluate the effect of new technology. Different expert tools are available to meet such needs.
It is far more practical to use those tools than to build and validate an equally detailed model in Simulink. While the detailed models
add accuracy, the input data needed for those models are difficult to obtain, and the models run slower. Hence, engineers must switch
between the detailed and simpler models depending on the analysis and what level of accuracy in the simulation results is desired. As
shown in Fig. 1, Autonomie provides a convenient way to use models of appropriate fidelity by enabling a plug-and-play function with
the models and by interfacing with expert system tools.

Steady State Model

Physical Model

Mean Efficiency Model

Highly Dynamic Model
with Production Code

Figure 1 - Autonomie allows plug-and-play of models with different levels of fidelity.

OBJECTIVE AND CHALLENGES

The objective is to introduce a process that allows a quick combination of multiple expert tools through the example of a vehicle
application. The main challenge is to find a methodology that is generic enough to handle specific interfaces‟ requirements and at the
same time is simple enough for non-expert users to implement. As is the case with the vast majority of expert tools, those considered in
this study support interface with Simulink through s-functions. The role of Autonomie is to reduce the user intervention and automate
the process as far as is possible.

The major challenges include the following:
1. Identify the s-functions parameters:

 Understand the s-functions‟ content for each tool.
 Obtain the inputs needed for the s-function and the input/output (I/O) signals of the s-function, etc., which often are not

documented in a standard format.
2. Ensure I/O compatibility with rest of the vehicle:

 Gather the information needed for each model.
 Convert the model outputs to signals required by other components.

3. Ensure unit compatibility across the vehicle:
 Automate unit convention to ensure unit compatibility.

4. Handle solver/step time settings:
 Set relevant solver setting by using the features in Simulink. Once the solver settings are specified by the system expert, they

can be re-used in future.

AUTONOMIE‟S ARCHITECTURE

Autonomie‟s plug-and-play architecture allows users to select any configuration (i.e., a list of sub-systems and details of how they are
connected) at any level of the vehicle architecture. Figure 2 shows a generic vehicle configuration composed of a driver model, an
environment model, an optional vehicle controller, and the vehicle propulsion architecture. The vehicle propulsion architecture in this
example consists of an engine, transmission, and vehicle dynamics subsystems.

Engine
GT-Power

Transmission
AMESim

Veh.Dynamics
CarSim

Driver

Environment

Vehicle Controller

Vehicle Propulsion
Architecture

Figure 2 - Autonomie vehicle with engine, transmission, and vehicle dynamics subsystems.

Each subsystem shown in Fig. 2 can have its own configurations (specific sub-structures). The configuration must be determined for
each specific case. In the case of the engine system, the GT-Power engine may be considered to be a plant model that takes throttle
command from the driver. An automatic transmission system needs a shifting controller and a plant. The AMESim transmission model
we consider for this example combines the torque converter and the gearbox. The plant model expects the controller to provide
commands for gear shifts and torque converter locking. The vehicle dynamics model in CarSim rolls up the differential, wheels, and
chassis model into one plant model. Figure 3 shows the configuration that was used for the systems under consideration; it is based on
separate controller and plant models.

GENERIC S-FUNCTION INTERFACE

Because each tool implemented its s-functions on the basis of specific styles [3, 4, 5], it is understandable that they do not conform
with Autonomie requirements. One simple solution is to build a wrapper around the s-function to make the I/O signals of the s-function
compatible with Autonomie. The wrapper that has been developed is generic and is automatically created to facilitate that step of the
process. Figure 4 shows the different steps that must be followed to import an expert model into Autonomie.

Figure 3 - Controller-plant configuration is used for transmission. Engine and
vehicle dynamics have no controllers.

#1 – Develop Model in Native Environment

#2 – Develop wrapper in Simulink

#3 – Use Model in Autonomie

Figure 4 - Steps involved in importing a model from GT-Power.

This generic s-function interface can be used for many other tools as well, such as CarSim and AMESim. In some cases, we encounter
situations where the signals require unit conversions, normalization, or some more complicated processing as they are passed to or
from the s-function block. Autonomie modeling convention requires all signals to have international system (SI) units. The vehicle
speed might be reported in km/h or mph, and the signal has to be converted to m/s before sending it to other systems in the vehicle.
Another example is the throttle command, as the driver model in Autonomie provides an acceleration command in a normalized
fashion (i.e., with a range of from 0 to 1), whereas the throttle input for a GT Power engine model is the throttle opening expressed in
mm. Such conversion issues bring to the fore the need for input/output formatting blocks where we use s-functions.

To handle the different operating time steps that the different interface tools need, we added rate transition blocks to this interface. The
detailed view of the interface architecture is shown in Fig. 5. Each input and output signal has a separate I/O port. Most tools generate
some documentation files along with the s-function when they export their models to Simulink. With the support of each expert tool‟s
software company, Autonomie was programmed to read the documentation, which helps to build the wrapper around the s-function.
The details of the I/O signals, such as the signal name, type, units, range, and any other information, are captured by Autonomie and
are documented in .xml files for future reference. The generation of such .xml files is also part of the process Autonomie uses to
interface with external tools.

vehdyn _plant _stability _test

drv_brk_dmd_simu

chas_force _in chas_mass_in

chas_spd_out

chas_plant_lin_spd_out_simu

chas_plant_force _grade_simu

chas_plant_force _loss_simu

whl_plant_spd_in_simu

chas_plant_road_load_simu

flow_out

flow _out

6

chas_plant _road _load _simu

5

whl _plant _spd_in_simu

4

chas_plant _force _loss_simu

3

chas_plant _force _grade _simu

2

chas_plant _lin _spd_out _simu

1

CarSim S -Function
Vehicle Code : i_i

chas_spd_out

3

chas_force _in

2

drv_brk_dmd _simu

1

flow _out

6

chas_plant _road _load _simu

5

whl _plant _spd_in_simu

4

chas_plant _force_loss_simu

3

chas_plant _force _grade _simu

2

chas_plant _lin _spd_out _simu

1

output formatting

from _CarSim

veh _spd

force _grade

force _loss

road_load

whl_spd

fd _spd

input formatting

drv_brk_dmd_simu

chas_force

chas_spd_out

to_CarSim

Rate Transition 1 Rate Transition

CarSim S -Function
Vehicle Code : i_i

chas_spd_out

3

chas_force _in

chas_mass_in

2

drv_brk_dmd _simu

1

Advanced Options for users
1. Add I/O formatting blocks if needed
2. Add Rate transition blocks if needed.

CarSim S -Function
Vehicle Code : i_i

Convert to Autonomie format
1. Separate ports for each signal.
2. Create subsystem, save model
3. Generate supporting XML

Figure 5 - Wrapper built around the s-function.

STEPS TO HANDLE TOOL-SPECIFIC SETTINGS

Expert tools that support a Simulink interface bring in new prerequisites to be satisfied. Some of the common requirements include the
following:

a. The Simulink model should be saved before it can be run.
b. Related files (simfile, *.dat, *.ame, etc.) needed for the interfaced s-function should be in the same folder as the saved model.
c. In some cases, an active session of the interfaced tool should be present while the simulation is run.
d. Simulink solver settings should be modified to accommodate specific step times.
e. Certain folders have to be added to the Matlab path.
f. Parameters defined elsewhere in the vehicle have to be set on the interfaced model (or vice versa).

Autonomie provides specific process steps to incorporate the tool-specific settings. The steps defined for CarSim, AMESim, and GT-
Power are available for users to use as examples while integrating their own models or while developing new interfaces with other
tools.

APPROPRIATE USE OF EXPERT TOOLS

Having the capability to interface with the expert tools does not provide all of the answers to the challenges in using those tools. The
use of detailed models with very fine time steps can slow down the simulation considerably. In those instances where the speed of the
simulation models is critical, we may still be forced to use simpler models. In the absence of test data or in the case of evaluating new
technologies, the initialization data needed for these simpler models will have to be generated from detailed physics-based models.
Figure 6 shows how the same engine model can be used to support different applications.

Steady State
Test data

steady state
model

Low fidelity
applications

High fidelity
applications

Engine testing

Detailed Simulation

Figure 6 - Appropriate use of detailed simulation tools.

GT Power Engine on Virtual Dynamometer

Autonomie allows specific sub-systems testing. This example show how an engine plant model imported from GT-Power can be
simulated as a stand-alone system. As shown in Fig. 7, the generic source block allows users to provide inputs (such as speed and
throttle) to ensure that the engine operates at steady-state conditions at various operating points. The parameters of interest (e.g., torque
output and fuel consumption) are monitored at the generic sink block. This configuration helps us run a virtual “engine on
dynamometer” system and generate the data needed for the simpler default engine models used in Autonomie.

Figure 7 - Engine model on virtual dynamometer.

FUEL ECONOMY ANALYSIS USING DETAILED VEHICLE MODEL

In general, fuel economy analyses are performed based on numerous assumptions for the drive cycle and road conditions. On an ideal
(i.e., straight, long, and flat) test path or on a dynamometer, vehicle dynamics have little effect on the fuel economy. Many studies
involving real-world drive cycles have shown that the real-world fuel economy can vary significantly from the tests conducted under

ideal conditions. In past studies, the speed trace recorded from actual driving was used to measure the vehicle fuel economy. The
simulation of real-world driving conditions can be taken a step forward if we can simulate the effect of steering on fuel consumption.
That simulation can be accomplished easily by interfacing a CarSim vehicle dynamics model with a powertrain model developed in
Autonomie. For such an analysis, a CarSim model can be configured to use an external powertrain (Fig. 8).

Figure 8 - CarSim model with external powertrain.

Figure 8 shows the details of the CarSim vehicle definition. Such components as the engine and transmission are simulated in
Autonomie, whereas the differential, wheels, and vehicle dynamics are simulated by using CarSim. The gearbox torque output and
brake commands are the inputs to the CarSim model, and the most important feedback from CarSim is the vehicle speed. The
Autonomie driver model controls the vehicle speed, and the CarSim driver model controls the vehicle steering to keep it on the road
that is defined in CarSim. The signals are exchanged between the tools to ensure that the inputs needed for both tools are satisfied.

As an initialization step, Autonomie reads the „simfile‟ generated by CarSim to gather important information, such as vehicle mass,
wheel radius, final drive ratio, etc. Some of these values are used to compute the gear shift maps. Such information exchange between
interfaced tools at an initialization/pre-processing stage is very important to ensuring that the vehicle-level control logics receive the
appropriate inputs.

Straight vs. Circular Track

To evaluate the impact of steering on fuel consumption, the vehicle is driven on both a straight road and a circular track, as shown in
Fig. 9. There are a variety of factors that can affect a vehicle‟s fuel economy when it is driven on a circular path. For example, low-
and high-speed cornering differs significantly. In the case of high-speed turns, the wheels are subjected to significant lateral forces, and
slip angles will be present at each wheel [6], leading to energy loss that is not accounted for in straight-line driving or low-speed
cornering. Simulating such a case is possible only with the use of both a detailed vehicle dynamics model and an accurate model for
the rest of the vehicle.

Figure 9 - Road options considered in CarSim.

In this experiment, we compare the fuel consumption rates of a four-wheel-drive compact vehicle driven at steady speeds in a straight
line and on a circular track.

Figure 10 shows the vehicle built in Autonomie including the CarSim dynamic vehicle model.

Figure 10 - Vehicle built by Autonomie uses CarSim vehicle dynamics model.

The simulation runs were conducted at different steady-state speeds varying from 2 m/s (~5 mph) to 30 m/s (~70 mph). The effect of
the circular path on the fuel consumption was measured for each speed.

The default Autonomie models were used for all components except for the vehicle dynamics system. Although it would have been
possible to use a detailed engine model from GT Power, the time involved in simulating such a model had made it an unattractive
option this particular study. Instead, the steady-state engine map developed by GT-Power using the process described earlier has been
used as an input to initialize the simpler Simulink model. A simpler Simulink model is used for the transmission as well, as this study
concentrates on the vehicle dynamics rather than on the transmission behavior. The model of the detailed vehicle dynamics built in
CarSim was converted to an s-function and was used with the powertrain built in Autonomie. The vehicle steering (which keeps the
vehicle in either a straight line or on a circular track) was handled within CarSim. The accelerator and brake commands to keep the
vehicle at a steady speed were provided by the Autonomie driver model.

As shown in Fig. 11, Autonomie allows the selection of a variety of predefined processes and the creation of customized processes. In
this experiment, the process for running a steady-state test was selected. For each kind of interface, the specific solver settings and
other prerequisites are satisfied by running certain Matlab scripts. Such a script can be added as a “modifier” on any process in
Autonomie.

Figure 11 - Selecting special process steps for running interfaced tools.

As shown in Fig. 12, this modifier capability will allow the insertion of custom codes in between the default scripts used by Autonomie
to build, initialize, and run the vehicle. By defining such modifiers, we can ensure that all of the prerequisites to run an interfaced tool
are satisfied before the interfaced Simulink/s-function model is allowed to run.

Interface related modifiers are
inserted into the regular build
& run process

Figure 12 - Insertion of a modifier for CarSim interface.

The simulation output, shown in Fig. 13, suggests that turns have little effect on fuel consumption at low speeds; at higher speeds,
however, turning can cause a significant difference in fuel consumption. All of the default post-processing capabilities of Autonomie
and the interfaced tools are retained in such simulations. This feature helps when tracing the effect of the cornering to the additional
driving loads on the vehicle and eventually to the additional torque demand on the engine.

Although a detailed analysis of the effect of the turns on each component is beyond the scope of this study, this test case provides a
glimpse of what can be accomplished when engineers have the ability to interface expert tools.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 10 20 30 40

n
o

rm
al

iz
e

d
 m

p
g

vehicle speed (m/s)

straight path

circular path

Figure 13 - Effect of cornering on fuel economy.

CONCLUSIONS

Autonomie provides a framework to perform advanced simulation studies by facilitating the integration of models developed in tools
that are best suited for each system simulation. GT-Power, AMESim, and CarSim have already been interfaced through the generic
process. The detailed system models developed in these tools can be simulated as a component in a virtual vehicle developed in
Autonomie. Although the approach used in the interfacing techniques is widely known, engineers who must create this interface

manually faces significant challenges, as the task demands that they master detailed knowledge about multiple simulation tools and
their respective and characteristic peculiarities related to the Simulink interface.

The modeling standards and the architecture used in Autonomie help in automating the interface to a large extent. Once an s-function
wrapper is built and formatted for use in Autonomie, all future use of that model requires no special action on the part of users. This
capability is a distinct advantage that Autonomie offers to engineers as an enterprise-wide modeling and simulation framework.

REFERENCES

1. Halbach, S., Sharer, P., Pagerit, P., Folkerts, C., Rousseau, A., “Model Architecture, Methods, and Interfaces for Efficient Math-
Based Design and Simulation of Automotive Control Systems,” SAE 2010-01-0241, SAE World Congress, Detroit, Michigan,
April 2010.

2. Argonne National Laboratory, Autonomie (Version 1.0), Computer Software, Argonne, IL, 2009, http://www.autonomie.net.
3. Mechanical Simulation, Technical Memo, http://www.carsim.com/downloads/pdf/simulink_abs_example.pdf.
4. AMESim, Simulink Interface, http://www.amesim.com/uploads/docs/software/interfaces/flyer_simulink_interface_letter.pdf.
5. GT-SUITE Simulink Coupling Tutorials, Ver. 7, September 2009.
6. Gillespie, T.D., “Fundamentals of Vehicle Dynamics”, SAE International, ISBN: 978-1-56091-199-9, 1992.

CONTACT INFORMATION

Aymeric Rousseau
E-mail: arousseau@anl.gov
(630) 252-7261

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy‟s Vehicle Technology Office under the direction of David Anderson and
Lee Slezak. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

http://www.autonomie.net/
http://www.carsim.com/downloads/pdf/Simulink_ABS_Example.pdf
http://www.amesim.com/uploads/docs/software/Interfaces/flyer_simulink_interface_Letter.pdf
mailto:arousseau@anl.gov

