

2010-01-0241

Model Architecture, Methods, and Interfaces for
Efficient Math-Based Design and Simulation

of Automotive Control Systems

S. Halbach, P. Sharer, S. Pagerit, C. Folkerts, A. Rousseau
Argonne National Laboratory

Copyright © 2010 SAE International

ABSTRACT

Many of today’s automotive control system simulation tools are suitable for simulation, but they provide
rather limited support for model building and management. Setting up a simulation model requires more
than writing down state equations and running them on a computer. The role of a model library is to
manage the models of physical components of the system and allow users to share and easily reuse
them. In this paper, we describe how modern software techniques can be used to support modeling and
design activities; the objective is to provide better system models in less time by assembling these system
models in a “plug-and-play” architecture. With the introduction of hybrid electric vehicles, the number of
components that can populate a model has increased considerably, and more components translate into
more possible drivetrain configurations. To address these needs, we explain how users can simulate a
large number of drivetrain configurations. The proposed approach could be used to establish standards
within the automotive modeling community.

INTRODUCTION

Building hardware is expensive. Traditional design paradigms in the automotive industry often delay
control system design until late in the process — in some cases requiring several costly hardware
iterations. To reduce costs and improve time to market, it is imperative that greater emphasis be placed
on modeling and simulation. This only becomes truer as time goes on because of increasing complexity
of vehicles, a greater number of vehicle configurations, and larger numbers of people working on projects,
which complicates design choices. To fully realize the benefits of math-based design, the models created
must be as flexible and reusable as possible.

Greater reliance on modeling and simulation does come at some cost. Even if institutional inertia can be
overcome, new processes must be put in place to facilitate communication between all the different
model creators and consumers, as well as to handle an increase in the number of files, which can be
quite significant and overwhelming.

Consider the case of an average automotive original equipment manufacturer (OEM). Within an OEM,
there may be several subgroups doing modeling and simulation. In years past, each subgroup would
typically have had its own set of models, each with its own modeling conventions. For example, a
subgroup working on battery hardware may have a custom vehicle model for plugging its battery model
into for testing. Another subgroup may have its own vehicle model for plugging in an electric machine

model. An altogether different group in charge of the control logic has its own vehicle model. None of the
subgroups can share or reuse its models because they all use different naming conventions, model
organizations, numbers of ports, and other conventions. Not only is it a waste of time for subgroups to
duplicate each other’s work, it can also introduce errors. For example, the control logic subgroup might
have its own engine plant models that are not the same as the ones used by the engine plant modelers.

Now consider that each of these subgroups may have different models (e.g., for comparing one battery
technology to another, or hot maps vs. cold maps), models of different fidelities (e.g., a high-level model
might be good for an architecture decision making study, but not for testing control logic), and different
versions of one model (e.g., version 1 had some issues, which were fixed in version 2). All of this holds
true for the other associated files as well, such as initialization or configuration files. So, each
independent subgroup might have hundreds of individual files to manage. This could be even worse for a
parts supplier who might have all of these problems, as well as additional levels of versioning to conform
to the modeling standards of their various customers.

In a perfect world, automotive subject matter experts (SMEs) would create libraries of models within their
domain (engine, transmission, battery, etc.). These libraries would contain models of varying degrees of
complexity depending on their intended use, but they would comply to robust standards, allowing them to
be used interchangeably. In this way, all model users would have access to exactly the models they
needed, allowing them to quickly go from high-concept feasibility studies to physical confirmation, with full
trust in the ultimate results.

Several tools already exist to develop detailed plant model, including GT-Power [1], AMESim [2], CarSim
[3], and SimScape [4]. The objective of Autonomie is not to provide a language to develop detailed
models; rather, Autonomie [5] supports the assembly and use of models from design to simulation to
analysis with complete plug-and-play capabilities. Autonomie provides a plug-and-play architecture to
support this ideal use of modeling and simulation for math-based automotive control system design.
Models in the standard format create building blocks, which are assembled at runtime into a simulation
model of a vehicle, system, subsystem, or component to simulate. All parts of the graphical user interface
(GUI) are designed to be flexible to support architectures, systems, components, and processes not yet
envisioned. This allows the software to be molded to individual uses, so it can grow as requirements and
technical knowledge expands. This flexibility also allows for implementation of legacy code, including
models, controller code, processes, drive cycles, and post-processing equations. A library of useful and
tested models and processes is included as part of the software package to support a full range of
simulation and analysis tasks, immediately. Autonomie also includes a configuration and database
management front end to facilitate the storage, versioning, and maintenance of all required files, such as
the models themselves, the model’s supporting files, test data, and reports.

OVERVIEW

This paper provides a series of best practices to facilitate efficient math-based design and simulation
of automotive control systems, as used by the Autonomie system. These practices include using a
standardized modeling architecture, on-demand model building, associated extendible markup language
(XML) definition files, and GUIs for managing models, including a file versioning database (Figure 1).

A standardized modeling architecture is needed to ensure interoperability of the various models. In this
case, the standard would include common terminology; a hierarchical view of the model; certain standard
levels in that hierarchy; various definition files, such as initialization and post-processing files; and
common XML files to control it all. The standard would also dictate a way to lay out the ports of the
individual models for ease of understanding.

Figure 1: Simulation Management Concepts

The model building feature constructs a Simulink® (MathWorks) model diagram by using information
provided by the GUI in an XML file, known as the run file, as well as information given in layout files. The
run file is the culmination of all the information the user has provided through the GUI. The pieces of this
file are used by the automated model building feature, such as the user-selected vehicle configuration
files. The configuration files contain information about the relative position of systems and their
interconnections. The layout files contain information about translation relative to absolute position and
about other peripheral blocks and systems that are involved in connection routing and contribute to the
overall style, look, and feel of the Simulink model.

Layout files have three different levels of abstraction. Static layout files are a direct translation of the style
of a Simulink model into the XML Argonne Model Description Specification (XAMDS) and cannot be used
across systems. Dynamic layout files have XAMDS elements that are resolved at build time and other
elements that are only library elements. These files have greater flexibility and can be used across many
different systems of a given category. Abstract dynamic layouts have a structure that is determined at
build time. These files have the most flexible structure and can be used across many different categories
of systems.

Each file managed by the system is associated with an XML file, which contains the metadata used to
manage the file. XML was chosen for its flexibility and for its wide usage in the software industry. XML is
easy to read by software and humans alike. As a language, it is specifically designed to create domain-
and application-specific sublanguages, and to pass information easily between software. In this case, we
will be using it to pass information both between different parts of our program, but also between different
users of the overall modeling system. These XML files contain all of the information necessary to achieve
true plug-and-play capability and are explored in detail later in this paper. They are collectively known as
“definition files” because they are used to fully flesh out and define the object to be modeled.

Finally, all of the different files and pieces must be controlled by a GUI for ease of use. Given the amount
of information that will be available to choose from, it would be easy for a user to be overwhelmed. The
Autonomie GUI works seamlessly with the pieces to provide quick access to the correct files, with
integrated compatibility checks to guide the user as much as possible. In addition, the GUI will integrate
with a central database to provide common offline model storage and file version control.

Figure 2: Container and Terminating Systems

ARCHITECTURE

All systems in the vehicle architecture can be logically categorized as either a containing system or a
terminating system (Figure 2). Containing systems consist of one or more subsystems, as well as optional
files to define that system. They do not contain models; they only describe the structure of
interconnections of systems and subsystems. Terminating systems consist of a model that defines the
behavior of the system and any files needed to provide inputs or calculate outputs. Terminating system
models contain the equations that describe the mathematical functions of system or subsystem.

Both of these types of systems are arranged in a hierarchical fashion to define the vehicle to be
simulated. To avoid confusion, it is a best practice to mimic the structure of the actual hardware as much
as possible. For example, low-level component controllers should be grouped with the components that
they control, located at different levels of the hierarchy where applicable. Also, only systems that actually
appear in the vehicle should be represented; in other words, there is no need for unused components or
empty controllers. In addition to simplifying the architecture, this philosophy will allow for easy transfer of
systems among users and will fully support hardware-in-the-loop, software-in-the-loop, and rapid-control
prototyping, if desired.

The relative positions of the systems, as well as connections between the systems and bus information,
are contained in an architecture description file known as a configuration file. The use of an XML file for
this information ensures that no restrictions are placed on the layouts of the systems. This allows
complete flexibility on the part of the system modeler. Any organization is possible, as long as the
systems can be characterized by effort and flow inputs and outputs. However, to simulate vehicles, a
particular organization is suggested to avoid confusion and to help standardize layouts. Following this
organization will allow for maximum reusability, both within an organization and externally among
companies or universities.

At the top level is a vehicle system containing the following systems: environment; driver; vehicle
propulsion controller (VPC) for advanced powertrain vehicles, such as hybrids or plug-in hybrids, which
require a vehicle level controller; and a vehicle propulsion architecture (VPA) (Figure 3). The VPA system
will contain whichever powertrain components are required to simulate the vehicle, such as engine,
battery, and wheels. Under any component system, there should be a standard layout for systems, known
as the controller, actuator, plant, and sensor (CAPS) configuration (Figure 4). Any or all of the four CAPS-
level systems may be present. If a system to be simulated does not contain any actuators or sensors,

only the controller and plant systems may be present. Many systems do not have independent
controllers and may therefore contain only a plant system. For example, a driver will only have a
controller, a differential will only have a plant and an engine will have both.

Figure 3: Top-Level Vehicle Layout

Figure 4: Controller Actuator, Plant, and Sensor Configuration for an Engine System

Depending on the fidelity of the model, additional and more detailed levels may be specified under the
CAPS level. For example, if individual pieces of an engine plant have been modeled, such as a cooling
subsystem or an exhaust subsystem, they would become subsystems of the engine plant system. An
electronic throttle model, which is included in the actuator subsystem, might also have its own CAPS level
to represent properly the technology.

Note that the general philosophy of mimicking the actual vehicle hardware as closely as possible takes
precedence. Although the standard is fairly generic, subsystems should be created where necessary and
deviations from the standard are acceptable only when required for consistency with a physical system
(Figure 5).

Figure 5: Controller Placement Consistent with Physical Hardware

SYSTEM DEFINITION

Several files can be specified to fully define a system: initialization files, preprocessing files, and post
processing files. In addition, a model file can be specified for a lowest or “leaf-level” (terminating) system
(Figure 6).

Initialization and preprocessing files are evaluated to provide input values to a model. Initialization data
are a set of constants. Preprocessing data are also used to initialize a model; however, these data require
some processing or equations to arrive at a final value. Only model files that require input parameters
require initialization data, so initialization and preprocessing files are always optional. Post-processing
files are evaluated at the end of the simulation run to further calculate values used for analysis. The
values from these files cannot be used as inputs for models.

In most cases, initialization and preprocessing files are specified on a terminating system, and the values
apply directly to the model defining the system on which they are placed. In some instances, it makes
sense to have the files on a containing system; for example, a parent system may need to aggregate
information from all of its subsystems to calculate a value. Also note that these files are provided in a list:
that is, multiple files of the same type can be specified on a system, allowing common information to be
broken out into a separate file to avoid duplication. For a calculation performed for multiple systems, for
example, a separate post-processing file can be created and selected on all the appropriate systems.

Figure 6: Motor with Example Definition Files Selected

Models can be specified on terminating systems only. This means that in most cases, the models are
specified at the CAPS level. Model files are created by using Matlab/Simulink [6] and represent one
system. To further capitalize on full reusabilty, the models are created with a common format and based
on Bond Graph concepts [7]. The ports on the left side of the model are input ports, and they are used to
transmit information from the previous system. The ports on the right side of the model are output ports,
and they are used to transmit information to the next system.

The top pair of ports represent information flowing through the systems or shared between systems and
subsystems. For example, information from another system, including commands (e.g., engine on/off,
gear number), may be received on the input, and simulated variables may be passed on to the output
(e.g., torque, rotational speed, current, voltage). An engine plant in the standard CAPS layout may
receive command information from the controller or actuator system to its left and send out information
about its state to the sensor block to its right (Figure 7).

Figure 7: Example Engine Plant Block with Ports

The second pair of ports carry the “effort variables” (e.g., voltage or torque) through the system.The third
pair of ports carry the “flow variables” (e.g., current or speed) through the system.

If a model does not participate in the propulsion of the vehicle and thus does not have an effort and flow,
it will only contain the information-passing ports (the top pair).

SIMULINK BUILDING

The model files created for the terminating systems need to be combined in a way that allows simulation
in Simulink. One option is to create every possible combination of the systems and save each complete
vehicle as a separate model file. This option quickly becomes infeasible when one considers the
staggering number of combinations. Not only are we dealing with a number of different components,
which is already overwhelming, but we also must also consider different levels of fidelity and model

versions for each component. Changing the version of a single component model would result in a new
version of the entire vehicle. This method is clearly storage intensive and impractical.

A second option is to save every model in its own file and manage a library of the models. This would be
an improvement over the first option; however, it still presents some difficulties. When a user wishes to
create a new vehicle, he or she has to select all of the appropriate models from the library and connect
them by hand into a vehicle context. Not only is this manual process time consuming, but it introduces
many opportunities for error. Consider an engine control unit (ECU) model for auto code generation that
can have more than 2,000 inputs and outputs (I/O). Manually connecting all I/O guarantees errors. It also
requires some outside solution for model library management (such as searching, versioning, and
ensuring compatibility).

Autonomie uses a novel approach that combines the second option with an automated building process.
This gives the user the flexibility of saving and versioning models independently without the headache of
manually connecting everything. Users select the correct files in a user interface, and the automatic
building uses metadata associated with the models to create the correct connections. This GUI also uses
the metadata to facilitate the other necessary functions, such as compatibility checks and file selection.

Using an automated build procedure also provides other advantages. In some cases, models are not free
to use any architecture or naming convention. A model might be used for interfacing with hardware or for
automatic code generation, which may impose certain restrictions. In some cases, it might not be feasible
to convert legacy models to a new format as a result of time or budget constraints. In those cases, the
automatic building can isolate rogue models by automatically placing blocks before and after them to do
certain conversions, such as variable name conversions, unit conversions, and data type conversions. As
such, the Autonomie system can be used with legacy models with minimum modification. Figure 8 shows
an example of automatic input and output translation. The system located in the middle represents the
model of the specific component (e.g., transmission controller). To be able to connect any legacy code
through plug-and-play, two separate blocks are used to translate the input and outputs. The input block is
used to extract the required parameters for the model (e.g., gear ratio, vehicle speed, among others) and
change their units (e.g., vehicle speed from m/s to mph) and their data type. The output block is used to
also change units and data type to the convention defined by Autonomie, as well as rename the output
parameters that will be sent to the bus to be used by other systems. As such, using the XML file
describing the model, legacy code with different number of I/O, units, and data type can be easily reused
in Autonomie without major modifications.

Figure 8: Automatic Input and Output Translation Blocks

METADATA

Each definition file (model, initialization, preprocessing, and post-processing) requires an associated
metadata file to provide additional information (Figure 9). Metadata files are the mechanisms by which the
definition files are managed. The information provided in metadata files serves three main purposes, as
described in the following paragraphs.

First, the metadata are used to ensure that everything is explicitly specified. For example, each parameter
on a file is fully qualified with data type information, unit, and range. Neither the software nor the users of
the definition files need to make assumptions or learn archaic or confusing modeling conventions.
Removing the reliance on this sort of institutional knowledge reduces opportunities for errors and allows
files to be shared between divisions or companies, even when they do not agree on the naming
convention.

Figure 9: Metadata Files

Second, metadata allow reusability and transferability of files by enabling automatic compatibility checks
among such information as input and output variables, file types, and related files that may be needed for

compatibility. In this way, systems can be used as black boxes: as long as the interfaces defined in the
metadata files are satisfied, the system can be expected to work in a vehicle context. Model creators can
be confident that their models are used appropriately, and model consumers can plug-and-play without
needing to know the inner workings of the models.

Third, the metadata adds a level of user friendliness by providing a location for “helper information,” such
as a description and a display name. This information can be used by modelers to find a model they are
looking for and to quickly understand what the file represents. Other such helper information could include
a proprietary field, links to related files such as documentation, CAD drawings, test data or validation
reports, and a field to hold the level of modeling fidelity.

Because the list of potentially useful pieces of data is infinite, metadata files also contain a set of
key/value pairs known as properties. These properties allow model creators to add any piece of
information relevant to a model — even new types of data that were not anticipated by the software
developers. In this manner, the model can always display the type of data that is of interest to a user
without restricting the model creator in any way.

USER INTERFACE

To fully define an object to simulate (e.g., a vehicle), we have to specify a tremendous amount of
information and deal with many files. The number of files only increases when you consider the need for
seamless cooperation of different versions of the same file and different levels of fidelity, each requiring
its own supporting files. Therefore, a GUI to manage these file libraries is critical.

Autonomie is a software environment with a GUI that manages this complexity and makes it possible for
novice users, as well as experts, to quickly find the files they need, to stitch them together into a cohesive
simulation, to execute standard work processes, and to perform database management functions without
becoming overwhelmed.

Users have also the possibility to overwrite any existing parameter describing a plant or a control. In
addition, proprietary code can be implemented, including system model, data, and control logic, and other
information. Users also have the ability to create their own configurations (e.g., how many components
describe a system, how they are connected) and processes (e.g., new drive cycles, specific set of
multiple simulations). Finally, the post-processing calculations and reports can be customized as well
through the GUI.

Considering the concept of containing systems and terminating systems, a vehicle model has a logical
hierarchical structure: the vehicle contains the VPA system, which contains component systems (such as
an engine), which contain plants, on down to the lowest level of systems (which themselves contain
models). Autonomie has two ways of displaying this information: in a tree format in the Project window
and as a series of icons representing systems that can be “drilled down on” to navigate deeper into the
structure (Figure 10).

A system is always the basic unit of the structure. This helps keep the systems logically encapsulated,
which, in turn, manages complexity. A user who is not an engine expert does not need to know how many
levels there are under an engine system, how many models the functionality is broken down into, or
where the models are. One only needs to know that he or she has an engine system that, as long as the
inputs and outputs of that system are satisfied, will work with any other systems in the vehicle.

To facilitate this system mindset, the System Properties window (Figure 10) always displays information
about the selected system. Properties of the system are selected here, including definition files and, for a

terminating system, a model file. Each system can be selected in turn until all of the information is filled in
and the vehicle model is complete for simulation.

GUI XML FILES — There are several XML files that the GUI uses to help the user abstract all of the
pieces for easier management. The first file type is a system file. This file represents one block on the
GUI and everything contained within it, including any definition files or parameters that have been
overridden in the GUI for the system, as well as all subsystems below this level. A system can be saved
at any level. In this way, a user can save a piece of completed vehicle to be reused later or to be
transferred to someone else. For example, one user might find it convenient to save an entire engine
system, containing both a controller and a plant, while another user may only save the engine plant, so
that it can be reused later with various controllers.

Figure 10: Vehicle in Autonomie

Once the various system files are completed and saved, users need not concern themselves with the
details: they can quickly select prebuilt pieces into a completed vehicle. This avoids work duplication
because each subgroup does not have to create its own representation of a system for their modeling
efforts. It also allows component experts, such as battery experts, to focus on the areas they are familiar
with while they are still able to evaluate their components both as a standalone system and within a
vehicle context (Figure 11). Systems can be exported and transferred that way, or the systems can be
shared through the database. Autonomie includes as many pre-built systems as possible to give users a
“jump start” into creating vehicles from scratch.

Figure 11: A Powertrain Is Assembled by System Experts

A vehicle file is logically much the same: it represents a system file saved at the top level, containing all
other systems. An Autonomie vehicle would contain driver, environment, VPC and VPA subsystems, and
all of their associated subsystems. Selecting a completed vehicle would allow a user to proceed
immediately to the next step, which is to define the process to run, such as selecting a drive cycle. As
with the system models, Autonomie includes as many prebuilt vehicle models as possible. Most users will
probably start with a prebuilt vehicle and modify it.

The final XML file is the run file, which contains all the information to recreate both the vehicle and the
selected processes. The process information is the only difference between this file and a vehicle file
(Figure 12). Given a run file, Autonomie will duplicate the simulation, provided none of the underlying
definition files has changed in the interim.

Figure 12: XML File Relationships

Once familiar with the use of these files, users can save their work at any level: system, vehicle, or run.
These files help to encapsulate work so that users can focus on just their areas of expertise and not get
bogged down in the details. These files can be transferred between people to facilitate collaboration and
reuse.

FINDING FILES IN THE GUI — To support the use of GUI files, they also contain the same types of
information as the definition files, such as display name, description, proprietary designation, and
properties. Properties are key/value pairs of information that a file creator or modeler believes are useful

to identify that file. For example, engine system files might have properties that specify displacement or
number of cylinders, and battery system files might have properties that specify chemistry type or peak
power. Vehicle files might have properties that specify powertrain type or transmission type (manual,
automatic, etc.).

The GUI uses the information in any metadata file (definition file or GUI file) to help a user search for a
file. Because the architecture is generic, there is no way to know what sorts of information might be useful
to a person trying to locate a particular file. For this purpose, the GUI uses the metadata values specified
as properties to create a search dialog (Figure 13). The GUI also performs some initial filtering behind the
scenes, so that only files that are compatible with the currently selected system are displayed. That way,
the dialog is always context-sensitive, and the user can select from among files that are relevant without
having to perform additional filtering.

When the GUI compiles the list of files to show in the dialog, it combines all of the properties of the files to
create the columns of the dialog. The dialog is created on the fly every time it is displayed, and the layout
of the dialog changes on the basis of what it is showing. Only columns interesting and useful to finding
those particular files are displayed. If, in the future, it becomes apparent that another piece of data would
be useful for finding a file, it can simply be added to the appropriate metadata files and the dialog will
display it as a column, with no code changes. In addition, these columns can be sorted or filtered to
quickly and efficiently use the provided data to narrow in on the appropriate files.

DATABASE MANAGMENT — One of the critical areas of math-based design and simulation is file library
management. As previously mentioned in this paper, the number of required files is staggering.

The number of files should begin to decrease as the various users and SMEs start to conform to the
standard, merging their common files and getting rid of redundancy. However, during this process, people
may have access to many new files that they did not create. This adds yet another layer of complexity to
the file selection process: not only are there hundreds or thousands of files, but the searcher is looking at
files he or she is not familiar with.

A database is required to manage all of these files, preferably a “source control” system that can
inherently manage versioning. Autonomie provides a front end (Figure 14) that will interact with this
database system in a way that is meaningful to an Autonomie user. If a user elects to download a vehicle
file, the GUI would know to download all of the definition files needed to load that vehicle into Autonomie.
This GUI is designed to support the typical database use cases: searching for files, controlling user
access, getting files from the database to the working area, uploading files from the working area to the
database, checking out files for modification and checking them in, and making comparisons between
local versions of files versus the version in the database.

Figure 13: Using User-Defined Information to Find Files

Figure 14: Database Utility

Consider the workflow for a model developer who wishes to create a new model to be used by others.
First, the model must be created in Simulink. Assuming the model is in the proper format, the user next
needs to create the proper XML metadata file to support its usage. In this case, the database utility
provides a GUI so that the modeler can fill in all the required information and generate the correct XML
file. The modeler must then upload the new model, along with its metadata definition file, to the database,
so the model is available for other users.

The database utility has been designed with the same flexibility as the rest of Autonomie, allowing several
places for customization. For example, a plug-in can be created to allow the database utility GUI to
connect to any “source control” provider. Also, custom processes can be added if the user has certain

logic that needs to be executed, such as certain review and approval protocols that must be met before
allowing a check in.

SIMULATIONS / PROCESSES

When most vehicle modelers think about running a simulation, they immediately think about a driving
cycle (i.e., a vehicle speed trace). However, this is a limited view of what sort of simulations can be run
with the Autonomie tool. To test a single component, it might be more appropriate to exercise the model
with selected inputs, such as a torque or speed profiles. Some simulations may be more of a process,
such as component sizing, parameter tuning, or optimization, which might require running multiple
simulations. Other processes might not have any sort of trace input at all, such as a preliminary test to
make sure the model builds correctly.

Autonomie uses the word “process” to include all of these different types of simulations under one
umbrella. A process specifies the sequences of preprocessing and post-processing steps. One process
can contain another process, creating a new process that is a composition of the two. For example, using
the Autonomie process for a Five Cycle Procedure and the process for an Autonomie optimization
routine, a new composition process—a Five Cycle Procedure wrapped in an optimization—can be
defined. This composition operation can involve any number of processes. The Autonomie “process
building” function mimics the structure of the Autonomie “system building” function. Process composition
is completed automatically just before runtime by the GUI. Metafiles that define the architecture and steps
of a process facilitate the development of composite processes.

A process is defined by an XML file. Each step has a Matlab .m file that is wrapped by a metadata file,
known as a process step info file.

The process step info file lists the name of the associated .m file, as well as the usual display name,
description, and proprietary fields. It also contains information about the parameters that the .m file
accepts, including a default value for each parameter. The process file lists all of the process steps, in
order, and can also specify overrides to the parameter values. In addition, an editor can be provided as
an optional plug-in and will be displayed in the GUI. Providing an editor leads to flexibility by allowing
users to graphically change parameters at runtime. For example, an editor that allows for the selection of
a drive cycle can provide a visual representation of that drive cycle. Finally, the process and all of its
parameter values are written, along with all of the vehicle information, into the run file.

This loose definition of a process allows users to create their own processes, including editors displayed
in the GUI for the process steps. The possibilities are endless, allowing users to apply the Autonomie
software in ways the tool developers have not yet even imagined.

SUMMARY AND CONCLUSIONS

To reduce costs, the automotive industry must embrace math-based control system design for modeling,
simulation, testing, and analysis. This paper proposes an ideal modeling process, wherein SMEs produce
libraries of high-quality models in varying levels of fidelity for use throughout an organization and across
the automotive industry. These models connect seamlessly for maximum reusability and flexibility, making
collaboration quick and easy. The models developed by these experts can be used from the beginning to
the end of the design process, from high-level configuration sorting studies, to code testing with
production software (such as software-in-the-loop, hardware-in-the-loop or rapid-control prototyping), and,
finally, to solving production problems. Reuse of models is promoted and costly duplication and
redundancy throughout the development process is eliminated.

To arrive at this ideal and efficient virtual development process, we apply certain techniques, such as a
standardized modeling architecture, on-demand model building, the use of associated XML definition
files, and GUIs for managing models. The techniques described in this paper will allow one to
successfully navigate the challenges of executing a comprehensive strategy of math-based control
system design for modeling, simulation, testing, and analysis, thus shortening time to market and
reducing costs.

ACKNOWLEDGMENTS

This work was supported by DOE’s Vehicle Technology Office under the direction of Lee Slezak. The
submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National
Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated
under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on
its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf
of the Government.

REFERENCES

1. 	 www.gtisoft.com
2. 	 www.amesim.com/
3. 	 www.carsim.com
4. 	 www.mathworks.com/products/simscape
5. 	Argonne National Laboratory, Autonomie, Computer Software, www.transportation.anl.

gov/modeling_simulation/index.html, 2009.
6. 	 The Mathworks, Inc., Matlab Release 4.7, User’s Guide, 2007.
7. 	 Karnopp, D., Margolis, D., and Rosenberg, R. System Dynamics: A Unified Approach, 2nd edition,

New York, John Wiley & Sons, Inc., 1990.

CONTACT

Aymeric Rousseau
(630) 252-7261
E-mail: arousseau@anl.gov

mailto:arousseau@anl.gov
www.transportation.anl
www.mathworks.com/products/simscape
http:www.carsim.com
http:www.amesim.com
http:www.gtisoft.com

