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ABSTRACT 

Many of today’s automotive control system simulation tools are suitable for simulation, but they provide 
rather limited support for model building and management. Setting up a simulation model requires more 
than writing down state equations and running them on a computer. The role of a model library is to 
manage the models of physical components of the system and allow users to share and easily reuse 
them. In this paper, we describe how modern software techniques can be used to support modeling and 
design activities; the objective is to provide better system models in less time by assembling these system 
models in a “plug-and-play” architecture. With the introduction of hybrid electric vehicles, the number of 
components that can populate a model has increased considerably, and more components translate into 
more possible drivetrain configurations. To address these needs, we explain how users can simulate a 
large number of drivetrain configurations. The proposed approach could be used to establish standards 
within the automotive modeling community. 

INTRODUCTION 

Building hardware is expensive. Traditional design paradigms in the automotive industry often delay 
control system design until late in the process — in some cases requiring several costly hardware 
iterations. To reduce costs and improve time to market, it is imperative that greater emphasis be placed 
on modeling and simulation. This only becomes truer as time goes on because of increasing complexity 
of vehicles, a greater number of vehicle configurations, and larger numbers of people working on projects, 
which complicates design choices. To fully realize the benefits of math-based design, the models created 
must be as flexible and reusable as possible. 

Greater reliance on modeling and simulation does come at some cost. Even if institutional inertia can be 
overcome, new processes must be put in place to facilitate communication between all the different 
model creators and consumers, as well as to handle an increase in the number of files, which can be 
quite significant and overwhelming. 

Consider the case of an average automotive original equipment manufacturer (OEM). Within an OEM, 
there may be several subgroups doing modeling and simulation. In years past, each subgroup would 
typically have had its own set of models, each with its own modeling conventions. For example, a 
subgroup working on battery hardware may have a custom vehicle model for plugging its battery model 
into for testing. Another subgroup may have its own vehicle model for plugging in an electric machine 



 
   

 
 

 

 
 

 

 
 

 
 
 

 

 
 

   
  

 
    

 

 
  

  

 

 

 
 
 

model. An altogether different group in charge of the control logic has its own vehicle model. None of the 
subgroups can share or reuse its models because they all use different naming conventions, model 
organizations, numbers of ports, and other conventions. Not only is it a waste of time for subgroups to 
duplicate each other’s work, it can also introduce errors. For example, the control logic subgroup might 
have its own engine plant models that are not the same as the ones used by the engine plant modelers. 

Now consider that each of these subgroups may have different models (e.g., for comparing one battery 
technology to another, or hot maps vs. cold maps), models of different fidelities (e.g., a high-level model 
might be good for an architecture decision making study, but not for testing control logic), and different 
versions of one model (e.g., version 1 had some issues, which were fixed in version 2). All of this holds 
true for the other associated files as well, such as initialization or configuration files. So, each 
independent subgroup might have hundreds of individual files to manage. This could be even worse for a 
parts supplier who might have all of these problems, as well as additional levels of versioning to conform 
to the modeling standards of their various customers. 

In a perfect world, automotive subject matter experts (SMEs) would create libraries of models within their 
domain (engine, transmission, battery, etc.). These libraries would contain models of varying degrees of 
complexity depending on their intended use, but they would comply to robust standards, allowing them to 
be used interchangeably. In this way, all model users would have access to exactly the models they 
needed, allowing them to quickly go from high-concept feasibility studies to physical confirmation, with full 
trust in the ultimate results. 

Several tools already exist to develop detailed plant model, including GT-Power [1], AMESim [2], CarSim 
[3], and SimScape [4]. The objective of Autonomie is not to provide a language to develop detailed 
models; rather, Autonomie [5] supports the assembly and use of models from design to simulation to 
analysis with complete plug-and-play capabilities. Autonomie provides a plug-and-play architecture to 
support this ideal use of modeling and simulation for math-based automotive control system design. 
Models in the standard format create building blocks, which are assembled at runtime into a simulation 
model of a vehicle, system, subsystem, or component to simulate. All parts of the graphical user interface 
(GUI) are designed to be flexible to support architectures, systems, components, and processes not yet 
envisioned. This allows the software to be molded to individual uses, so it can grow as requirements and 
technical knowledge expands. This flexibility also allows for implementation of legacy code, including 
models, controller code, processes, drive cycles, and post-processing equations. A library of useful and 
tested models and processes is included as part of the software package to support a full range of 
simulation and analysis tasks, immediately. Autonomie also includes a configuration and database 
management front end to facilitate the storage, versioning, and maintenance of all required files, such as 
the models themselves, the model’s supporting files, test data, and reports. 

OVERVIEW 

This paper provides a series of best practices to facilitate efficient math-based design and simulation 
of automotive control systems, as used by the Autonomie system. These practices include using a 
standardized modeling architecture, on-demand model building, associated extendible markup language 
(XML) definition files, and GUIs for managing models, including a file versioning database (Figure 1). 

A standardized modeling architecture is needed to ensure interoperability of the various models. In this 
case, the standard would include common terminology; a hierarchical view of the model; certain standard 
levels in that hierarchy; various definition files, such as initialization and post-processing files; and 
common XML files to control it all. The standard would also dictate a way to lay out the ports of the 
individual models for ease of understanding. 



 

 

 
 

  

 
 

 

  
 

 
 

 
 

 
 

 
 

 

 
  

 

Figure 1: Simulation Management Concepts 

The model building feature constructs a Simulink® (MathWorks) model diagram by using information 
provided by the GUI in an XML file, known as the run file, as well as information given in layout files. The 
run file is the culmination of all the information the user has provided through the GUI. The pieces of this 
file are used by the automated model building feature, such as the user-selected vehicle configuration 
files. The configuration files contain information about the relative position of systems and their 
interconnections. The layout files contain information about translation relative to absolute position and 
about other peripheral blocks and systems that are involved in connection routing and contribute to the 
overall style, look, and feel of the Simulink model. 

Layout files have three different levels of abstraction. Static layout files are a direct translation of the style 
of a Simulink model into the XML Argonne Model Description Specification (XAMDS) and cannot be used 
across systems. Dynamic layout files have XAMDS elements that are resolved at build time and other 
elements that are only library elements. These files have greater flexibility and can be used across many 
different systems of a given category. Abstract dynamic layouts have a structure that is determined at 
build time. These files have the most flexible structure and can be used across many different categories 
of systems. 

Each file managed by the system is associated with an XML file, which contains the metadata used to 
manage the file. XML was chosen for its flexibility and for its wide usage in the software industry. XML is 
easy to read by software and humans alike. As a language, it is specifically designed to create domain- 
and application-specific sublanguages, and to pass information easily between software. In this case, we 
will be using it to pass information both between different parts of our program, but also between different 
users of the overall modeling system. These XML files contain all of the information necessary to achieve 
true plug-and-play capability and are explored in detail later in this paper. They are collectively known as 
“definition files” because they are used to fully flesh out and define the object to be modeled. 

Finally, all of the different files and pieces must be controlled by a GUI for ease of use. Given the amount 
of information that will be available to choose from, it would be easy for a user to be overwhelmed. The 
Autonomie GUI works seamlessly with the pieces to provide quick access to the correct files, with 
integrated compatibility checks to guide the user as much as possible. In addition, the GUI will integrate 
with a central database to provide common offline model storage and file version control. 



 

 

  
 

 

  

 
 
 

 

 
  

  

 

 

 
 
 

 

Figure 2: Container and Terminating Systems 

ARCHITECTURE 

All systems in the vehicle architecture can be logically categorized as either a containing system or a 
terminating system (Figure 2). Containing systems consist of one or more subsystems, as well as optional 
files to define that system. They do not contain models; they only describe the structure of 
interconnections of systems and subsystems. Terminating systems consist of a model that defines the 
behavior of the system and any files needed to provide inputs or calculate outputs. Terminating system 
models contain the equations that describe the mathematical functions of system or subsystem. 

Both of these types of systems are arranged in a hierarchical fashion to define the vehicle to be 
simulated. To avoid confusion, it is a best practice to mimic the structure of the actual hardware as much 
as possible. For example, low-level component controllers should be grouped with the components that 
they control, located at different levels of the hierarchy where applicable. Also, only systems that actually 
appear in the vehicle should be represented; in other words, there is no need for unused components or 
empty controllers. In addition to simplifying the architecture, this philosophy will allow for easy transfer of 
systems among users and will fully support hardware-in-the-loop, software-in-the-loop, and rapid-control 
prototyping, if desired. 

The relative positions of the systems, as well as connections between the systems and bus information, 
are contained in an architecture description file known as a configuration file. The use of an XML file for 
this information ensures that no restrictions are placed on the layouts of the systems. This allows 
complete flexibility on the part of the system modeler. Any organization is possible, as long as the 
systems can be characterized by effort and flow inputs and outputs. However, to simulate vehicles, a 
particular organization is suggested to avoid confusion and to help standardize layouts. Following this 
organization will allow for maximum reusability, both within an organization and externally among 
companies or universities. 

At the top level is a vehicle system containing the following systems: environment; driver; vehicle 
propulsion controller (VPC) for advanced powertrain vehicles, such as hybrids or plug-in hybrids, which 
require a vehicle level controller; and a vehicle propulsion architecture (VPA) (Figure 3). The VPA system 
will contain whichever powertrain components are required to simulate the vehicle, such as engine, 
battery, and wheels. Under any component system, there should be a standard layout for systems, known 
as the controller, actuator, plant, and sensor (CAPS) configuration (Figure 4). Any or all of the four CAPS-
level systems may be present.  If a system to be simulated does not contain any actuators or sensors, 



 

 

 

 

 
 

only the controller and plant systems may be present.  Many systems do not have independent 
controllers and may therefore contain only a plant system.  For example, a driver will only have a 
controller, a differential will only have a plant and an engine will have both. 

Figure 3: Top-Level Vehicle Layout 

Figure 4: Controller Actuator, Plant, and Sensor Configuration for an Engine System 

Depending on the fidelity of the model, additional and more detailed levels may be specified under the 
CAPS level. For example, if individual pieces of an engine plant have been modeled, such as a cooling 
subsystem or an exhaust subsystem, they would become subsystems of the engine plant system. An 
electronic throttle model, which is included in the actuator subsystem, might also have its own CAPS level 
to represent properly the technology. 

Note that the general philosophy of mimicking the actual vehicle hardware as closely as possible takes 
precedence. Although the standard is fairly generic, subsystems should be created where necessary and 
deviations from the standard are acceptable only when required for consistency with a physical system 
(Figure 5). 



 

  

 

   

 
 

  
 
 

 

 

   

 

Figure 5: Controller Placement Consistent with Physical Hardware 

SYSTEM DEFINITION 

Several files can be specified to fully define a system: initialization files, preprocessing files, and post
processing files. In addition, a model file can be specified for a lowest or “leaf-level” (terminating) system 
(Figure 6). 

Initialization and preprocessing files are evaluated to provide input values to a model. Initialization data 
are a set of constants. Preprocessing data are also used to initialize a model; however, these data require 
some processing or equations to arrive at a final value. Only model files that require input parameters 
require initialization data, so initialization and preprocessing files are always optional. Post-processing 
files are evaluated at the end of the simulation run to further calculate values used for analysis. The 
values from these files cannot be used as inputs for models. 

In most cases, initialization and preprocessing files are specified on a terminating system, and the values 
apply directly to the model defining the system on which they are placed. In some instances, it makes 
sense to have the files on a containing system; for example, a parent system may need to aggregate 
information from all of its subsystems to calculate a value. Also note that these files are provided in a list: 
that is, multiple files of the same type can be specified on a system, allowing common information to be 
broken out into a separate file to avoid duplication. For a calculation performed for multiple systems, for 
example, a separate post-processing file can be created and selected on all the appropriate systems. 



 

 

 

 
  

 

 
 

  
 

 

 

 

  
 
 

Figure 6: Motor with Example Definition Files Selected 

Models can be specified on terminating systems only. This means that in most cases, the models are 
specified at the CAPS level. Model files are created by using Matlab/Simulink [6] and represent one 
system. To further capitalize on full reusabilty, the models are created with a common format and based 
on Bond Graph concepts [7]. The ports on the left side of the model are input ports, and they are used to 
transmit information from the previous system. The ports on the right side of the model are output ports, 
and they are used to transmit information to the next system. 

The top pair of ports represent information flowing through the systems or shared between systems and 
subsystems. For example, information from another system, including commands (e.g., engine on/off, 
gear number), may be received on the input, and simulated variables may be passed on to the output 
(e.g., torque, rotational speed, current, voltage). An engine plant in the standard CAPS layout may 
receive command information from the controller or actuator system to its left and send out information 
about its state to the sensor block to its right (Figure 7). 

Figure 7: Example Engine Plant Block with Ports 

The second pair of ports carry the “effort variables” (e.g., voltage or torque) through the system.The third 
pair of ports carry the “flow variables” (e.g., current or speed) through the system.  

If a model does not participate in the propulsion of the vehicle and thus does not have an effort and flow, 
it will only contain the information-passing ports (the top pair). 

SIMULINK BUILDING  

The model files created for the terminating systems need to be combined in a way that allows simulation 
in Simulink. One option is to create every possible combination of the systems and save each complete 
vehicle as a separate model file. This option quickly becomes infeasible when one considers the 
staggering number of combinations. Not only are we dealing with a number of different components, 
which is already overwhelming, but we also must also consider different levels of fidelity and model 



  

 

 

 

 

 
 

 
 

 
 
 

 
  

 
  

 

 

versions for each component. Changing the version of a single component model would result in a new 
version of the entire vehicle. This method is clearly storage intensive and impractical. 

A second option is to save every model in its own file and manage a library of the models. This would be 
an improvement over the first option; however, it still presents some difficulties. When a user wishes to 
create a new vehicle, he or she has to select all of the appropriate models from the library and connect 
them by hand into a vehicle context. Not only is this manual process time consuming, but it introduces 
many opportunities for error. Consider an engine control unit (ECU) model for auto code generation that 
can have more than 2,000 inputs and outputs (I/O). Manually connecting all I/O guarantees errors. It also 
requires some outside solution for model library management (such as searching, versioning, and 
ensuring compatibility). 

Autonomie uses a novel approach that combines the second option with an automated building process. 
This gives the user the flexibility of saving and versioning models independently without the headache of 
manually connecting everything. Users select the correct files in a user interface, and the automatic 
building uses metadata associated with the models to create the correct connections. This GUI also uses 
the metadata to facilitate the other necessary functions, such as compatibility checks and file selection. 

Using an automated build procedure also provides other advantages. In some cases, models are not free 
to use any architecture or naming convention. A model might be used for interfacing with hardware or for 
automatic code generation, which may impose certain restrictions. In some cases, it might not be feasible 
to convert legacy models to a new format as a result of time or budget constraints. In those cases, the 
automatic building can isolate rogue models by automatically placing blocks before and after them to do 
certain conversions, such as variable name conversions, unit conversions, and data type conversions. As 
such, the Autonomie system can be used with legacy models with minimum modification. Figure 8 shows 
an example of automatic input and output translation. The system located in the middle represents the 
model of the specific component (e.g., transmission controller). To be able to connect any legacy code 
through plug-and-play, two separate blocks are used to translate the input and outputs. The input block is 
used to extract the required parameters for the model (e.g., gear ratio, vehicle speed, among others) and 
change their units (e.g., vehicle speed from m/s to mph) and their data type. The output block is used to 
also change units and data type to the convention defined by Autonomie, as well as rename the output 
parameters that will be sent to the bus to be used by other systems.  As such, using the XML file 
describing the model, legacy code with different number of I/O, units, and data type can be easily reused 
in Autonomie without major modifications. 



 

 

 

 

 

 

 

 

 

Figure 8: Automatic Input and Output Translation Blocks 

METADATA 

Each definition file (model, initialization, preprocessing, and post-processing) requires an associated 
metadata file to provide additional information (Figure 9). Metadata files are the mechanisms by which the 
definition files are managed. The information provided in metadata files serves three main purposes, as 
described in the following paragraphs. 

First, the metadata are used to ensure that everything is explicitly specified. For example, each parameter 
on a file is fully qualified with data type information, unit, and range. Neither the software nor the users of 
the definition files need to make assumptions or learn archaic or confusing modeling conventions. 
Removing the reliance on this sort of institutional knowledge reduces opportunities for errors and allows 
files to be shared between divisions or companies, even when they do not agree on the naming 
convention. 

Figure 9: Metadata Files 

Second, metadata allow reusability and transferability of files by enabling automatic compatibility checks 
among such information as input and output variables, file types, and related files that may be needed for 



 
 

  
 

 

 

 

 

 
 

 
 

 

 

 

 

 
 

  
 

 

 

compatibility. In this way, systems can be used as black boxes: as long as the interfaces defined in the 
metadata files are satisfied, the system can be expected to work in a vehicle context. Model creators can 
be confident that their models are used appropriately, and model consumers can plug-and-play without 
needing to know the inner workings of the models.  

Third, the metadata adds a level of user friendliness by providing a location for “helper information,” such 
as a description and a display name. This information can be used by modelers to find a model they are 
looking for and to quickly understand what the file represents. Other such helper information could include 
a proprietary field, links to related files such as documentation, CAD drawings, test data or validation 
reports, and a field to hold the level of modeling fidelity. 

Because the list of potentially useful pieces of data is infinite, metadata files also contain a set of 
key/value pairs known as properties. These properties allow model creators to add any piece of 
information relevant to a model — even new types of data that were not anticipated by the software 
developers. In this manner, the model can always display the type of data that is of interest to a user 
without restricting the model creator in any way. 

USER INTERFACE 

To fully define an object to simulate (e.g., a vehicle), we have to specify a tremendous amount of 
information and deal with many files. The number of files only increases when you consider the need for 
seamless cooperation of different versions of the same file and different levels of fidelity, each requiring 
its own supporting files. Therefore, a GUI to manage these file libraries is critical. 

Autonomie is a software environment with a GUI that manages this complexity and makes it possible for 
novice users, as well as experts, to quickly find the files they need, to stitch them together into a cohesive 
simulation, to execute standard work processes, and to perform database management functions without 
becoming overwhelmed. 

Users have also the possibility to overwrite any existing parameter describing a plant or a control. In 
addition, proprietary code can be implemented, including system model, data, and control logic, and other 
information. Users also have the ability to create their own configurations (e.g., how many components 
describe a system, how they are connected) and processes (e.g., new drive cycles, specific set of 
multiple simulations). Finally, the post-processing calculations and reports can be customized as well 
through the GUI. 

Considering the concept of containing systems and terminating systems, a vehicle model has a logical 
hierarchical structure: the vehicle contains the VPA system, which contains component systems (such as 
an engine), which contain plants, on down to the lowest level of systems (which themselves contain 
models). Autonomie has two ways of displaying this information: in a tree format in the Project window 
and as a series of icons representing systems that can be “drilled down on” to navigate deeper into the 
structure (Figure 10). 

A system is always the basic unit of the structure. This helps keep the systems logically encapsulated, 
which, in turn, manages complexity. A user who is not an engine expert does not need to know how many 
levels there are under an engine system, how many models the functionality is broken down into, or 
where the models are. One only needs to know that he or she has an engine system that, as long as the 
inputs and outputs of that system are satisfied, will work with any other systems in the vehicle. 

To facilitate this system mindset, the System Properties window (Figure 10) always displays information 
about the selected system. Properties of the system are selected here, including definition files and, for a 



 

 
 

 

 
 
 

 

 
  

 
  

 
 

 

terminating system, a model file. Each system can be selected in turn until all of the information is filled in 
and the vehicle model is complete for simulation. 

GUI XML FILES — There are several XML files that the GUI uses to help the user abstract all of the 
pieces for easier management. The first file type is a system file. This file represents one block on the 
GUI and everything contained within it, including any definition files or parameters that have been 
overridden in the GUI for the system, as well as all subsystems below this level. A system can be saved 
at any level. In this way, a user can save a piece of completed vehicle to be reused later or to be 
transferred to someone else. For example, one user might find it convenient to save an entire engine 
system, containing both a controller and a plant, while another user may only save the engine plant, so 
that it can be reused later with various controllers. 

Figure 10: Vehicle in Autonomie 

Once the various system files are completed and saved, users need not concern themselves with the 
details: they can quickly select prebuilt pieces into a completed vehicle. This avoids work duplication 
because each subgroup does not have to create its own representation of a system for their modeling 
efforts. It also allows component experts, such as battery experts, to focus on the areas they are familiar 
with while they are still able  to evaluate their components both as a standalone system and within a 
vehicle context (Figure 11). Systems can be exported and transferred that way, or the systems can be 
shared through the database. Autonomie includes as many pre-built systems as possible to give users a 
“jump start” into creating vehicles from scratch. 



 

 

  
 
 

 
 

 
 

 

 

 
 

 

  

Figure 11: A Powertrain Is Assembled by System Experts 

A vehicle file is logically much the same: it represents a system file saved at the top level, containing all 
other systems. An Autonomie vehicle would contain driver, environment, VPC and VPA subsystems, and 
all of their associated subsystems. Selecting a completed vehicle would allow a user to proceed 
immediately to the next step, which is to define the process to run, such as selecting a drive cycle. As 
with the system models, Autonomie includes as many prebuilt vehicle models as possible. Most users will 
probably start with a prebuilt vehicle and modify it. 

The final XML file is the run file, which contains all the information to recreate both the vehicle and the 
selected processes. The process information is the only difference between this file and a vehicle file 
(Figure 12). Given a run file, Autonomie will duplicate the simulation, provided none of the underlying 
definition files has changed in the interim. 

Figure 12: XML File Relationships 

Once familiar with the use of these files, users can save their work at any level: system, vehicle, or run. 
These files help to encapsulate work so that users can focus on just their areas of expertise and not get 
bogged down in the details. These files can be transferred between people to facilitate collaboration and 
reuse. 

FINDING FILES IN THE GUI — To support the use of GUI files, they also contain the same types of 
information as the definition files, such as display name, description, proprietary designation, and 
properties. Properties are key/value pairs of information that a file creator or modeler believes are useful 



 

 

 
 

 
    

 
 
 

 
   

  

 

 
 

 
 

 
 

 

 

to identify that file. For example, engine system files might have properties that specify displacement or 
number of cylinders, and battery system files might have properties that specify chemistry type or peak 
power. Vehicle files might have properties that specify powertrain type or transmission type (manual, 
automatic, etc.). 

The GUI uses the information in any metadata file (definition file or GUI file) to help a user search for a 
file. Because the architecture is generic, there is no way to know what sorts of information might be useful 
to a person trying to locate a particular file. For this purpose, the GUI uses the metadata values specified 
as properties to create a search dialog (Figure 13). The GUI also performs some initial filtering behind the 
scenes, so that only files that are compatible with the currently selected system are displayed. That way, 
the dialog is always context-sensitive, and the user can select from among files that are relevant without 
having to perform additional filtering. 

When the GUI compiles the list of files to show in the dialog, it combines all of the properties of the files to 
create the columns of the dialog. The dialog is created on the fly every time it is displayed, and the layout 
of the dialog changes on the basis of what it is showing. Only columns interesting and useful to finding 
those particular files are displayed. If, in the future, it becomes apparent that another piece of data would 
be useful for finding a file, it can simply be added to the appropriate metadata files and the dialog will 
display it as a column, with no code changes. In addition, these columns can be sorted or filtered to 
quickly and efficiently use the provided data to narrow in on the appropriate files. 

DATABASE MANAGMENT — One of the critical areas of math-based design and simulation is file library 
management. As previously mentioned in this paper, the number of required files is staggering. 

The number of files should begin to decrease as the various users and SMEs start to conform to the 
standard, merging their common files and getting rid of redundancy. However, during this process, people 
may have access to many new files that they did not create. This adds yet another layer of complexity to 
the file selection process: not only are there hundreds or thousands of files, but the searcher is looking at 
files he or she is not familiar with. 

A database is required to manage all of these files, preferably a “source control” system that can 
inherently manage versioning. Autonomie provides a front end (Figure 14) that will interact with this 
database system in a way that is meaningful to an Autonomie user. If a user elects to download a vehicle 
file, the GUI would know to download all of the definition files needed to load that vehicle into Autonomie. 
This GUI is designed to support the typical database use cases: searching for files, controlling user 
access, getting files from the database to the working area, uploading files from the working area to the 
database, checking out files for modification and checking them in, and making comparisons between 
local versions of files versus the version in the database. 



 

 

 

 
 
 

  

Figure 13: Using User-Defined Information to Find Files 

Figure 14: Database Utility 

Consider the workflow for a model developer who wishes to create a new model to be used by others. 
First, the model must be created in Simulink. Assuming the model is in the proper format, the user next 
needs to create the proper XML metadata file to support its usage. In this case, the database utility 
provides a GUI so that the modeler can fill in all the required information and generate the correct XML 
file. The modeler must then upload the new model, along with its metadata definition file, to the database, 
so the model is available for other users. 

The database utility has been designed with the same flexibility as the rest of Autonomie, allowing several 
places for customization. For example, a plug-in can be created to allow the database utility GUI to 
connect to any “source control” provider. Also, custom processes can be added if the user has certain 



 

 
 
 
 
 

 

 
  

 

 

  
 
 
 

 

 

 

 
 

 
 
 
 

  
 

logic that needs to be executed, such as certain review and approval protocols that must be met before 
allowing a check in. 

SIMULATIONS / PROCESSES 

When most vehicle modelers think about running a simulation, they immediately think about a driving 
cycle (i.e., a vehicle speed trace). However, this is a limited view of what sort of simulations can be run 
with the Autonomie tool. To test a single component, it might be more appropriate to exercise the model 
with selected inputs, such as a torque or speed profiles. Some simulations may be more of a process, 
such as component sizing, parameter tuning, or optimization, which might require running multiple 
simulations. Other processes might not have any sort of trace input at all, such as a preliminary test to 
make sure the model builds correctly. 

Autonomie uses the word “process” to include all of these different types of simulations under one 
umbrella. A process specifies the sequences of preprocessing and post-processing steps. One process 
can contain another process, creating a new process that is a composition of the two. For example, using 
the Autonomie process for a Five Cycle Procedure and the process for an Autonomie optimization 
routine, a new composition process—a Five Cycle Procedure wrapped in an optimization—can be 
defined. This composition operation can involve any number of processes. The Autonomie “process 
building” function mimics the structure of the Autonomie “system building” function. Process composition 
is completed automatically just before runtime by the GUI. Metafiles that define the architecture and steps 
of a process facilitate the development of composite processes. 

A process is defined by an XML file. Each step has a Matlab .m file that is wrapped by a metadata file, 
known as a process step info file. 

The process step info file lists the name of the associated .m file, as well as the usual display name, 
description, and proprietary fields. It also contains information about the parameters that the .m file 
accepts, including a default value for each parameter. The process file lists all of the process steps, in 
order, and can also specify overrides to the parameter values. In addition, an editor can be provided as 
an optional plug-in and will be displayed in the GUI. Providing an editor leads to flexibility by allowing 
users to graphically change parameters at runtime. For example, an editor that allows for the selection of 
a drive cycle can provide a visual representation of that drive cycle. Finally, the process and all of its 
parameter values are written, along with all of the vehicle information, into the run file. 

This loose definition of a process allows users to create their own processes, including editors displayed 
in the GUI for the process steps. The possibilities are endless, allowing users to apply the Autonomie 
software in ways the tool developers have not yet even imagined. 

SUMMARY AND CONCLUSIONS 

To reduce costs, the automotive industry must embrace math-based control system design for modeling, 
simulation, testing, and analysis. This paper proposes an ideal modeling process, wherein SMEs produce 
libraries of high-quality models in varying levels of fidelity for use throughout an organization and across 
the automotive industry. These models connect seamlessly for maximum reusability and flexibility, making 
collaboration quick and easy. The models developed by these experts can be used from the beginning to 
the end of the design process, from high-level configuration sorting studies, to code testing with 
production software (such as software-in-the-loop, hardware-in-the-loop or rapid-control prototyping), and, 
finally, to solving production problems. Reuse of models is promoted and costly duplication and 
redundancy throughout the development process is eliminated. 



 

 
 

 
 
 
 

 

 
 

 
 

 

 
 

 

 
 

 

To arrive at this ideal and efficient virtual development process, we apply certain techniques, such as a 
standardized modeling architecture, on-demand model building, the use of associated XML definition 
files, and GUIs for managing models. The techniques described in this paper will allow one to 
successfully navigate the challenges of executing a comprehensive strategy of math-based control 
system design for modeling, simulation, testing, and analysis, thus shortening time to market and 
reducing costs. 
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