

SAE04-454

Feasibility of Reusable Vehicle Modeling:
Application to Hybrid Vehicles

Copyright © 2004 SAE International

ABSTRACT

Many of today’s vehicle modeling tools are good for
simulation, but they provide rather limited support for
model building and management. Setting up a
simulation model requires more than writing down state
equations and running them on a computer. The role of
a model library is to manage the physics of the system
and allow users to share and reuse component models.
In this paper, we describe how modern software
techniques can be used to support modeling and design
activities; the objective is to provide better system
models in less time by assembling these system models
in a “plug and play” architecture. With the introduction of
hybrid electric vehicles, the number of components that
can populate a model has increased considerably, and
more components translates into more drivetrain
configurations. To address these needs, we explain how
users can simulate a large number of drivetrain
configurations. The proposed approach could be used to
establish standards within the automotive modeling
community.

INTRODUCTION

In a world of growing competitiveness, the role of
simulation in vehicle development is constantly
increasing. Because of the number of possible advanced
powertrain architectures — such as hybrid or fuel cell —
that can be employed, the development of the next
generation of vehicles will require accurate, flexible
simulation tools. Such tools are necessary to quickly
narrow the technology focus to those configurations and
components that are best able to reduce fuel
consumption and emissions. The simulation tools must
be flexible enough to encompass a wide variety of
components and drivetrain configurations.

With improvements in computer performance, many
researchers started developing their own vehicle
models. But often, computers in simulation are used only
to “crunch numbers.” Moreover, model complexity is not
the same as model quality. Using wrong assumptions
can lead to erroneous conclusions; errors can come
from modeling assumptions or from data. To answer the
right questions, users need to have the right modeling

A. Rousseau, P.Sharer, F. Besnier
Argonne National Laboratory

tools modeling. For instance, one common mistake is to
study engine emissions by using a steady-state model or
to study component transient behavior by using a
backward model. Indeed, specific component models
and modeling philosophies should be used for specific
applications.

In this article, we describe how a graphical user interface
(GUI), combined with an innovative software
architecture, can be used to support powertrain
modeling. It is important to separate modeling from
simulation: We will focus on component model
management and powertrain building management. that
the paper will address ways in which component model
management involves much more than assigning
specific folders for each component and discuss how
powertrain building management is more complicated
than just manually connecting components together. The
Powertrain System Analysis Toolkit (PSAT) developed
at Argonne National Laboratory will be used to explain
the methodology.

PSAT INTRODUCTION

PSAT [1, 2] is a powerful modeling tool that allows users
to realistically evaluate not only fuel consumption but
also vehicle performance. One of the most important
characteristics of PSAT is that it is a forward-looking
model — meaning that PSAT allows users to model real-
world conditions by using real commands. For this
reason, PSAT is called a command-based model. A
driver model estimates the wheel torque necessary to
achieve the desired vehicle speed. The powertrain
controller then sends real commands to the different
components: throttle for engine, displacement for clutch,
gear number for transmission, or mechanical braking for
wheels to achieve the desired wheel torque. Because
the components react to the commands as they would
under real-world conditions, researchers can implement
advanced component models (based on physics rather
than lookup tables), take into account transient effects
(e.g., engine starting, clutch
engagement/disengagement or shifting), or develop
realistic control strategies (which can be used later to
control hardware).

PSAT, developed under Matlab/Simulink [3], allows the
simulation of more than 150 predefined configurations,
including conventional, electric, parallel hybrid, series
hybrid, fuel cell, fuel cell hybrid, and power-split hybrid
vehicles. Users can also choose two wheel drive (2wd),
four wheel drive (4wd), or two-times-two-wheel drive
(2t2wd). Such a capability is only possible by building all
these drivetrain configurations according to a user’s
inputs and component models from libraries. PSAT
takes additional advantage of the Matlab/Simulink
environment by allowing both control strategy and
component models to be directly coupled in the same
environment (which is not the case for C or FORTRAN
codes), as well as providing the option to integrate any
code using S-functions.

PSAT flexibility and reusability are based upon several
characteristics, which are discussed in the following
section.

SOFTWARE ARCHITECTURE

NAMING NOMENCLATURE — A well-defined nomen-
clature is fundamental to allowing users to easily
understand the tool and quickly access the results. Once
users are familiar with the nomenclature, they can
access parameters just by deducing their names. The

Table 1. PSAT Naming Nomenclature

rules governing PSAT variable names are defined as
follows:

 Begin with the type of component.

 Next provide “type of data,” which can have up to

two elements.
 Up to 63 total characters are allowed by MATLAB.
 Output variables end in “hist.”

No uppercase is used in the code. Examples of
parameter names are provided in Table 1.

USE OF STRUCTURE — Structures are MATLAB
arrays with named "data containers" called fields. The
fields of a structure can contain any kind of data. For
example, one field might contain a text string
representing a name, another might contain a scalar
representing a fuel economy result, a third might hold an
efficiency matrix, and so on. These structures allow the
software to be better organized and, consequently,
provide quicker access to information for users.

PSAT uses several structures that not only store
predefined powertrain configurations that the users can
access, but also store the user choices and the
simulation results. Table 2 describes the fields used to
define the drivetrain configurations.

POWERTRAIN BUILDING — A significant number of
advanced vehicle configurations are available; in fact, a
count of only the most popular options yields more than
one thousand. Because of time and money constraints,
it is impossible to build and test every one of these
configurations. In addition, for each configuration, users
need to be able to choose among different component
models. To be able to make the right decisions, users
need a flexible simulation tool that allows easy drivetrain
options and component model comparison.

Parameter Type of component Type of data #1 Type of data #2
eng_spd_hist "eng" for engine "spd" for speed
mc_volt_hist "mc" for motor controller "volt" for voltage
ptc_eng_trq_max_his
t

Engine information used in the controller ("ptc") "trq" for torque "max" for maximum

Table 2. PSAT Structure for Powertrain Configurations

Structur
e

Field name Description

config name Name of the powertrain (example: "par_2wd_p2_ct")
pwt Hybrid Family (example: "Parallel Hybrid")
axle Number of axles (example: "2 wheel drive")
trans Transmission technology (example: "ct" for continuous variable transmission)
name_compo List of the component used in the powertrain (example: {'drv', 'eng', 'mc', 'wh'…)
ver_compo List of component versions the user can select for this powertrain
pos_compo Location of each component in the powertrain and component it is connected to
prop_strat List of control strategies available for the powertrain. Users will choose one.

trs List of transient needed for the powertrain

Two options are commonly used within the modeling
community: a rigid, predefined, saved-model option and
a tedious, user-defined, component-by-component-
assembled-model option. The first option has the
advantage of speed but lacks drivetrain diversity
because of the large number of drivetrain models that
need to be independently saved. A change of a single
component model results in a new drivetrain model. The
second option has the advantage of conserving library
space and allows flexibility in drivetrain type, but it
requires inordinate amounts of the user’s time to
assemble the drivetrain models from the component
libraries. Both options quickly lead to versioning and
space issues. Having a couple hundred powertrain
models saved or building them by hand are obviously
not optimal solutions.

Within PSAT, the powertrain configurations are not
saved, but rather, they are automatically built. On the
basis of the user's choices, the information from the

structure is used to select the proper model for each
component, put it in the proper location, and connect all
the components together. Adding a configuration is then
as simple as adding a new field in the structure config
(Table 2).

POWERTRAIN MODEL

As an example, it is interesting to look at a PSAT parallel
configuration model to understand the interest in using a
standard format (Figure 1). The driver output is a torque
demand at the wheels, which is proportional to an
accelerator or brake pedal command. This demand is
sent to the powertrain controller (PTC), which decides
how each component of the drivetrain should operate.
Indeed, we make choices about the blending among the
different energy sources and when and how we start the
engine or shift a gear. The PTC sends specific
commands to the component control unit so that they
can be understood by the models. For instance, the PTC

Figure 1. Example of PSAT Powertrain Model

asks for a specific torque to the engine, and the engine
control unit (ECU) block within the component control
unit transforms the torque into a throttle demand that the
engine model can process. Then, the mechanical power
from the engine and the electrical power from the motor
(via the battery) are summed. In fact, both mechanical
and electrical power are used to propel the vehicle. The
component’s information is collected (via sensors), and
a bus is created (pwt_bus) to enable the system to use
the information back in the controller to make the next
decision.

COMPONENT MODEL

As shown in Figure 2, each component model is saved
in one of three specific libraries:

 The component model: models the physics of the
system.

 The constraints block: used to define the limits of the
component (for instance, the maximum engine
torque at the current speed).

 The signal conditioning block: used to send the
proper command to the component in the
component control unit (Figure 1).

The name of the library, as well as each block, also
follows naming convention rules based upon the
component name ("eng") as well as the model version
(1 in our example).

ORGANIZATION FORMAT — To easily exchange the
models and implement new ones, a common format,
based on Bond Graph [4], is used between the

Figure 2. Example of Component Library — Engine

input/output of the power ports, as shown in Figure 1.
The first ports are used for the information:

 Input: components commands (on/off engine, gear
number, etc.)

 Output (sensors): simulated measures (torque,
rotational speed, current, voltage, etc.)

The second ports carry the effort (e.g., voltage, torque);
the last ones carry the flow (e.g., current, speed).

This format allows users to select different levels of
component models depending upon the goal of the
simulation (i.e., if the user is interested in the fuel cell
component, he/she can use a very detailed fuel cell
model while the rest of the models are based upon look-
up tables). It is very important to notice that the first input
and output are vectors and can have any desired size: a
simple engine model can have only two inputs (such as
engine on/off and engine command), while a detailed
engine model can have five or more inputs.

Figure 3. Global Formalism for the I/O of the Models
Using Bond Graph

USE OF GOTO-FROM FORMAT — As shown in
Figure 4, to simplify the component models, we decided
to use the GOTO-FROM format. As far as the models
are concerned, all of the GOTO-FROM blocks are local
and are located at the upper level of the model (no
blocks are located in the subsystems). To facilitate the
work for Hardware in the Loop (Control Desk access to
the parameters and variables by using the Tags), the
names of the Tags are defined in accordance with
certain rules.

Other rules apply when developing a new component
model:

 Colors are used to simplify model understanding:
inports are in red, outports in cyan, GOTO-FROM in
green, and constants in yellow.

1 1

3
spd in

2
T/J out

mux_tx

gear ratio table

speed out

gear number

 input torque

torque_loss

torque_out

Torque calculation

gear nb

torque input

Inertia Input

speed out

Speed

Speed Calculation

gear nb

Inertia_in

Inertia_out

Inertia Calculation

[tx_trq_out_hist]

[tx_trq_loss_hist]

[tx_spd_out_hist]

[tx_spd_in_hist]

[tx_ratio_hist]

[tx_inertia_out_hist]

[tx_gear_hist]

[tx_trq_out_hist]

[tx_trq_loss_hist]

[tx_trq_in_hist]

[tx_spd_out_hist]

[tx_spd_in_hist]

[tx_ratio_hist]

[tx_inertia_out_hist]

[tx_inertia_in_hist]

[tx_gear_hist]

e

3
spd out

2
T/J in

gear nb

tx_inertia_in_hist2bus

tx_ratio_hist2bus

tx_gear_hist2bus

tx_inertia_out_hist2bus

tx_trq_in_hist2bus

tx_trq_loss_hist2bus

tx_trq_out_hist2bus

tx_spd_in_hist2bus

tx_spd_out_hist2bus

output

m [tx_inertia_in_hist]

[tx_trq_in_hist]

Figure 4. Example of Transmission Component Model

 Three blocks are used within each model to
calculate speed, torque, and inertia.

 Lines to connect the information to the bus are
named (“parameter'2bus”). These names are used
so that users automatically know where each
parameter is located in the buses.

Once the buses are created, users can access the
parameters simply by using their names, as shown in
Figure 5. For example, if the user wants to access the
engine speed (parameter "eng_spd_hist"), he/she will
use the parameter "nb_" followed by the name of the
parameter. Accessing the wrong information is a major
cause for mistakes and, as most simulation model users
know, one of the most difficult to find. Another
advantage of using this parameterized bus structure is
that no major revision of the drivetrain model’s structure
is necessary when swapping between engine models
with different numbers of output parameters, because
the size of the bus is automatically updated.

CONTROL STRATEGY

PSAT powertrain controllers, which are in charge of
commanding the different components, have a generic
structure common to all configurations, as shown in
Figure 6. By using the accelerator/brake pedals and the

Figure 5. Parameter Access in the Buses

information coming (via sensors) from the component
models, we evaluate the constraints of the system, such
as the maximum available torque of the engine. We then
take those limits into account to define the optimized
control strategy, which allows us to use the powertrain

 Accelerator

pedal

Information
from

component
(sensors)

C
O
N
S
T
R
A
I
N
T
S

D
E
M
A
N
D

T
R
A
N
S
I
E
N
T
S

Figure 6. Powertrain Control Strategy Organization

Commands
to

components

components to minimize fuel consumption and
emissions. Finally, we take the transients into account
by defining the actions required to satisfy the control
strategy demands. For instance, if the control strategy
decides to shift gears with a manual transmission, we
have to cut off the engine ignition, declutch, engage the
neutral gear, engage the new gear, clutch, and inject
once again. These steps have to happen successively
and lead to a modification of the demands previously
sent by the demand block.

Within the PSAT powertrain controller, different
strategies can be selected within a particular powertrain
model. Indeed, because the strategy has an important
impact on the fuel consumption, it is interesting to switch
between different control strategies to be able to
compare them. To evaluate the impact of these different
strategies, we can select and compare them through the
graphical user interface.

Parameter nomenclature:

	 The outputs of the constraints block end in
“cstr_hist.”

 The outputs of the demand block end in “dmd_hist”
(strategy).

 The outputs of the transient block end by “trs_hist.”
 The outputs of the component command block that

goes to the component models end by “cmd_hist”
(command).

USER FRIENDLINESS

GRAPHICAL USER INTERFACE — Development of a
graphical user interface (GUI) is very important to
facilitate user choices in terms of drivetrain
configuration, initialization files, and cycles.

Initialization Window — Figure 7 shows an example of
the initialization window.

1) Because of its flexibility, PSAT allows users to choose
more than 150 pre-selected configurations. When
looking at hybrids, it is difficult to talk about a parallel,
because there are probably several hundred of them. So
we decided to provide a picture of the exact drivetrain
configuration (as shown on the upper left). Because the
user also has the option of changing the location of the
electric motor(s), a popup menu has been added
(position 1 to 4).

2) Because of the number of components available in
PSAT, it was impossible to keep the list of possible plots
in a single popup menu. We decided to have a separate
list for each component, as shown on the bottom left.

3) Several other choices were made available to
facilitate user's decisions:

	 Checkboxes allow users to choose their particular
configurations.

	 Because several levels of modeling can be available
for a component (e.g., look-up table, neural network,
or physical-based for engine), a new column is used
to allow users to choose the version.

	 Question marks allow users to directly open the right
part of the documentation to provide information on
the different levels of modeling available.

	 A last popup menu has been added to provide
information on the technology of the component
(e.g., spark ignition [SI] or compressed ignition [CI]
for engine).

	 An option to choose between 2WD, 2t2WD, and
4WD configurations has been added.

	 If we can also change any look-up table by scaling
the different components, specific parameters can
be changed by using the variable list. The
parameters are listed by component.

Figure 7. Input for Graphical User Interface

4) The main menu also allows users to:

 Change the simulation algorithm (variable or fixed
step size); and

 Choose the units they want on the GUI
(e.g., Standard International [SI] or U.S. units).

5) Several other specific windows have been developed
to easily and automatically integrate new component
models (version) or types without opening any MATLAB
m-files. It is our intention that the user can do everything
through the GUI without opening even one file.

Cycle Choice Window — The second window of the GUI
allows users to choose the type of simulation to be
performed; in addition to choosing among a large
number of driving cycles, simulating the performance of
the drivetrains, and conducting a parametric study, users
can employ specific tools to run several simulations in a
row. These tools are critical because they allow
engineers to spend time analyzing results, instead of
waiting in front of their computers until the end of a
simulation. Users can run dozens of simulations during
the night and analyze the results in the morning.

When developing a control strategy, engineers always
use standard cycles. However, standard cycles have
limited benefits because they do not usually allow users
to check the system behavior close to its limits
(e.g., battery state-of-charge). It is then necessary to
validate the strategies by using real trips (about one to
two hours long in real time) rather than cycles (10 to

20 minutes long in real time). We have developed an
innovative GUI that allows users to build their own
cycles, which could be several hours long.

Post-Processing Windows — Because of the complexity
of hybrid electric vehicles, the post-processing
information obtained after each simulation has been
completed is crucial. PSAT naturally provides the final
results of each simulation and the capability to plot each
parameter. Users then have the option of easily
comparing, in a couple of clicks, the same parameters
from different simulations in order to, for example, study
the influence of a powertrain configuration on fuel
consumption. But more than the plots, detailed post-
processing data — including energy, power, efficiency,
torque, speed, current, and voltage — are very useful to
users.

Moreover, to better understand and improve the
drivetrain control strategy, PSAT provides all of this
information for the four different conditions of operation
(acceleration/deceleration and charging/discharging).

In order to run several simulations in a row and access
them later, each simulation is saved by using four
different files:

 A document, including the initial conditions and the
final results;

 A MAT file with all the variables from the simulation;
 A file with all the post-processing calculations (e.g.,

energies, efficiencies); and

	 An m-file to be able to rerun the exact same
simulation.

IMPLEMENTATION OF NEW DATA OR MODELS —
Because most simulation tools are developed for outside
use, one of the most important characteristics of a tool is
the option to easily implement proprietary data sets,
component models, or control strategies. Using the
structured approach previously described, we developed
a specific GUI that enables the user to implement
anything without modifying a single line of code, as
shown in Figure 8.

By using this window, users can add, view, or delete
data files, scaling algorithms, calculation files (for pre-
processing), or component models, as well as change
the picture. Component compatibilities are also taken
into account, which is an important but uncommon
capability for this type of software. In the PSAT model,
both the compatibility with the drivetrain configuration
and with other component models are taken into
account. For instance, one torque converter can only be
used with a specific automatic transmission of an engine
technology (or type) with a specific after-treatment.
Because software developers cannot expect users to
know or remember all the different compatibilities, PSAT
makes sure that only compatible choices are available
for selection in the input window (Figure 7).

COMPARISON OF SIMULATIONS — As previously
mentioned, the number of advanced powertrain
configurations is almost endless. To be able to make the
right decision, users need to be able to easily compare

different options. Several features have been
implemented in the code that allow users to run several
simulations in a row and later access the results. For the
same configuration, users can run several driving
schedules in a row, as well as performing parametric
studies. To allow comparison among different powertrain
or control strategies, we incorporated the ability to
automatically create batch runs. This is only possible by
saving the simulation parameters as well as the initial
conditions and final results.

Figure 9 shows an example of a comparison between
powertrain options. In that example, we ran a Toyota
Prius and a Honda Insight on the Japan 1015 cycle.
Each simulation can be accessed through a popup
menu, and parameters, such as engine torque (bottom
graph), can be compared. The first plot shows the
desired and obtained vehicle speeds (m/s), the second
one shows the engine torques (Nm) for each
configuration. The figure shows that the Toyota Prius
requires more torque from the engine than does the
Insight because of the lower weight and better
aerodynamics of the Insight.

COMPARISON BETWEEN SIMULATION AND TEST —
In order to be sure we select the right configuration or
control strategy, both the component and the drivetrain
models need to be validated. Validation is a very
important aspect of software development because it
demonstrates to users the degree of accuracy of the
software. Modeling tools can be validated by using
different data sources, including vehicle, component, or
drivetrain tests.

Figure 8: Integration of Data and Model

Figure 9. Prius and Insight Simulation Comparison on Japan 1015 Cycle

Argonne used all of these methodologies to validate
PSAT. However, although Argonne’s Advanced
Powertrain Research Facility (APRF) is sufficient in the
two first cases, the development of a specific tool
dedicated to prototyping was necessary for drivetrain
testing. To answer U.S. Department of Energy (DOE)
and FreedomCAR Partnership needs, Argonne
developed PSAT-PRO, the extension of PSAT for
prototyping.

In order to easily compare test and simulation data (from
APRF or PSAT-PRO), a specific window has been
developed, as shown in Figure 10, to be able to
dynamically replay tests, as well as simulation.
Simultaneously examining both data sets allows users to
process much more information than with static plots.
Users can compare — at every sample time — the
different powertrain parameters. In this example, the
vehicle speed is shown, as well as the engine, motor,
and generator maps. The tool allows users to quickly
understand where the engine operates and, most
importantly, why (i.e., deceleration, acceleration…). In
addition to being useful for understanding the control
strategy of a particular vehicle from test data, this GUI
can also be used to improve a control strategy from
simulation.

CONCLUSION

Because of the number of possible hybrid architectures,
the development of the next generation of vehicles will
require advanced and innovative simulation tools. Model
complexity does not mean model quality: flexibility,
reusability, and user friendliness are key characteristics
to model quality. By using a well-defined nomenclature,
a structured approach, and an innovative algorithm, we
are able to allow users to choose among more
predefined drivetrain configurations than any other tool.
Easy implementation of component data and models
(including handing compatibility issues), as well as
control strategies, is possible because we used a unified
component model approach and a graphical user
interface. Finally, comparison between simulations or
between test data and simulation is facilitated by
innovative dynamic interfaces. The structured, yet
flexible, approach used in PSAT could be used as a
base to establish industry standards within the
automotive modeling community, where each institution
implements its own data or model in a common generic
software architecture.

Figure 10. Dynamic Comparison of Test and Simulation — Prius Example

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy, under contract W-31-109-Eng-38. The authors
would like to thank Bob Kost and Lee Slezak of DOE,
who sponsored this activity.

REFERENCES

1. 	Argonne National Laboratory, PSAT (Powertrain
Systems Analysis Toolkit), www.psat.anl.gov, last
updated October 15, 2003.

2. 	 Rousseau, A., S. Pagerit, and G. Monnet, “The New
PNGV System Analysis Toolkit PSAT V4.1 —
Evolution and Improvements,” SAE paper 01-2536,
Future Transportation Technology Conference,
Costa Mesa, Calif., August 2001.

3. 	The Mathworks, Inc., Matlab Release 13, User's
Guide, 2003.

4. 	Karnopp, D., D. Margolis, and R. Rosenberg,
System Dynamics: A Unified Approach, 2nd edition,
John Wiley & Sons, Inc., New York, 1990.

CONTACT

Aymeric Rousseau
(630) 252-7261
E-mail: arousseau@anl.gov

mailto:arousseau@anl.gov
http:www.psat.anl.gov

