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Heat transfer apparatus 



Outline 
 Engineering Nanofluids – Important Properties Illustrated with SiC and 

Al2O3 nanoparticles in H2O and EG/H2O 

– Thermal conductivity 
– Viscosity 
– Heat Transfer 
– Erosion 
– Clogging 
– Pumping Power Penalty 

 
 Application for Cooling Power Electronics 
 
 Graphite/Graphene based Nanfluids 

 
 Summary 
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Nanofluids are a multivariable system 
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Highlights 

 Understand how to engineer nanofluids (NF) for optimization of 
heat transfer 
– Thermal conductivity of NF depends on particle shape, size, 

concentration, chemistry of fluid, and thermal conductivity of 
nanoparticle 

– Relationship between thermal conductivity and heat transfer 
(in laminar and turbulent regions) 

– Measured power required to pump NFs and compared to 
theoretical  

– Measured erosion of NF on radiator materials (have observed 
NONE) 

– Developed apparatus to measure clogging/fouling (have 
observed NONE) 
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Experimental Approach: 
 Optimization of material properties for nanofluid manufacturing  
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Effect of  on  

 Particle shape 
 Particle size  
 Base fluid effect 
 Additives  

Heat transfer 
coefficient  Thermal Conductivity 

 Viscosity 

 Testing of nanofluid performance at various temperatures 
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Viscosity Modification – SiC in H2O 
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Particle Size effect on viscosity 



Particle Shape Effects Boehmite (AlOOH) in 50% 
EG-50% H2O 
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Platelets Blades 

Cylinders Bricks 

•Nanoparticle phase and crystallite sizes by 
powder XRD 

• Particle sizes and agglomeration in solution by 
DLS, SAXS, BET, TEM, SEM 

~16nm 

~29nm 

~66nm 

~90nm 

from BET 
DLS 

SAXS 

E. Timofeeva, et al. JAP 106, 014304 2009 D. Singh, et al., JAP 105, 064306 (2009) 



Thermal Conductivity and Viscosity of AlOOH in EG/H2O 
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Hamilton-Crosser 
Einstein-Batchelor 



Particle size effect on thermal conductivity & viscosity 
4.1 vol.% α–SiC in H2O 
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Thermal Conductivity Analysis 
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Heat transfer α-SiC (4 vol%) in EG/H2O 
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(a) Particle size effect

Inlet T= 55°C 
E. Timofeeva, JAP, 109, 014914 (2011) 

Data from Wen Hu 



Heat transfer α-SiC (4 vol%) in EG/H2O turbulent flow  
Experiment vs. Calculated 
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Mo = Efficiency  
factor 



  Comparison of  4 vol % SiC nanoparticles in H2O and EG/H2O 
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– shift of isoelectric point 
– higher kinetic energy 

NB: Viscosity of 90 nm SiC in EG/H2O almost equal to that of base fluid for T≥75°C 



Dependence of Nanofluids on Properties-Systems 
Engineering Approach  

Nanoparticle Properties  
(Relative Importance) 

Viscosity Thermal 
Conductivity 

Heat Transfer 

Material (4.0) Weak Strong Strong 

Concentration(6.3) Strong Strong Strong 

Shape (3.8) Strong Medium Strong 

Size (5.0) Strong Strong Strong 
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Fluid Properties 
(Relative Importance) 

Viscosity Thermal 
Conductivity 

Heat Transfer 

Base fluid (5.3) Strong Weak Strong 

Zeta Potential (4.0) Strong Medium Strong 

Additives (2.8) Medium Weak Medium 

Temperature (3.8) Strong Medium Strong 

E. Timofeeva, et al., Nano Research Letters, 6, 182 (2011) 



Pumping Power and Erosion 
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specimen 
 chamber 

reservoir 

flow meter 

automotive pump 

motor T (°C) 

RPM 

Torque  measurement  and 
Data logger hidden behind 



Pumping Power 
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Fanning Friction Factor  

 V = velocity 
 µ = viscosity 
 K = friction factor of each component 
 L = length  
 d = diameter 
 ρ = density 
 η = pump efficiency 
 Re = Reynolds number 



Effect of particle size for SiC 
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NB: Torque vs Re  
gives a false impression 



However, plot vs. constant pumping power is 
more meaningful  – Turbulent Flow 

Based on property data, experimental values are slightly higher 



Little erosion (0.65%) for SiC nanofluid after hundreds 
of hours for 20 l/min≤V≤28 l/min(1400-1900 RPM 
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Pump impellor from racing car water pump 

7 cm 



Clogging 

 
 Thus far, no clogging has been observed with graphitic nanofluid 
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Insulation and heater removed 

1.6 mm 



Application of graphite-based nanofluids 

 Cooling power electronics 
– Can nanofluids be used to eliminate  
the low-temperature heat exchanger? 
– hnf/hbase ≥ 1.5 
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Nanofluid thermal conductivity ratio of  
1.5 decreases semi-conductor junction 
temperature to ≈ 139°C 



Heat flux increased by 50% for TC ratio ≈ 1.5  
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Is such a ratio possible??? 
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Literature data @ ambient temperature 



Carbon-based Nanoparticles 
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Graphite – Valvoline  Graphene oxide – ANL 

Graphene oxide with 
Cu nanoparticles – ANL 



Thermal Conductivity – Valvoline Graphite in 50/50 
Ethylene Glycol/Water + surfactant 

25 

Sample Number Weight 
percent (%) 

TCnf/TCbase fluid @ Room Temperature (%) 

 1 3.5 49.0±2 

2 6.0 65.0±5 

5 wt. % Graphene Oxide Nanosheets 
Fluid TC enhancement (%) 10–60°C reference 

Water 30.2 1 

Propyl glycol 62.3 1 

Liquid paraffin 76.8 1 

Ethylene glycol 61.0 2 

1Wei Yu, H. Xie, and W. Chen, JAP 107, 094317 (2010) 
2Wei Yu, H. Xie, and D. Bao, Nanotechnology 21, 055705 (2010)  



Thermal conductivity and Viscosity – Valvoline Graphite 
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Pumping power of NF/base fluid (@85°C) ≈ 3.5x 

hcnf/hcbase= 1.49 (laminar), 1.29 (turbulent) 



Summary 

 We have gained considerable knowledge about engineering 
nanofluids for effective heat transfer 
– Size, Shape & Material 
– Concentration 
– pH 
– Surface resistance (Kapitza resistance) 
– Base fluid 

 
 Applications for graphite-based nanofluids for HEV power 

electronic cooling using EG/H2O as base fluid look very 
promising but need to increase thermal conductivity 
enhancement and reduce viscosity 
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