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 The temperature of sliding components is of essential importance for the understanding 
friction, wear, and the generation of chemical reaction films that may form in oil-lubricated 
systems.  

 In boundary regime sliding, most of the load is carried by the surface asperities 

 Real area of contact << apparent area of contact   high localized stress  large frictional 
heating  

– deformation of asperities can be plastic or elastic 

 Temperature of microscopic asperities in area of sliding is difficult to measure 

– Brief 

– Localized 
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Goal 



 Thermoelectric or “dynamic thermocouple” approach can be used to assess 
temperature of the sliding contact 

 Makes use of electric potential generated when dissimilar metals are in contact 
with each other at elevated temperature: thermocouple junction 

 Electric potential generated only at point of touching tips of asperities - essentially 
instantaneous response time 

 Indicated temperature is average of all asperities in contact at any specific moment  

 Data acquisition system continuously  measure  temperatures directly with several 
degree accuracy 
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Background 



 

 Part 1 : low speed reciprocating measurements (strip on plate)  

 Part 2: high speed rotating measurements (block-on-ring) 
 

 For this work, type K, “Chromel-Alumel™” (Ni90%/Cr10%-
Ni95%/Al2%/Mn2%/Si1%) metals are available in bulk form 
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Experiment 

Alloy #2 

Alloy #1 
DA  

SYSTEM 



Bulk (Bowden1) 
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Flash (Ashby2) 

 
Flash (Gesim3) 

 
Flash (Kennedy4) 

 

Temperature rise above ambient, ∆T, during sliding is a function of geometry 
and material’s thermal and mechanical properties 
Most models find ∆Ta proportional to  

µ ∗relative speed ∗load

real area of contact 
 



 Alumel™ strip was spot welded to flat 

 Chromel ™ strip was spot welded to jig 

 Electrical insulation needed to reduce 60 Hz noise  

 Data acquired at 500 sample/s 

 1” stroke 

 Thermoelectric potential was measured by DA system and 
converted to °C 
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Low-speed reciprocating 

Pneumatic cylinder 

Position sensor 

Load cell 

Piezo sensor 

Specimen  



 Experimental conditions for first tests 

– Sliding was done in SAE 10w30 fully formulated motor oil 

– Normal load < 100 N to avoid scuffing of nickel-based materials 

– 22°C at start of test and returned to 22°C after test 
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Low-speed reciprocating 



 Expanding graph  at a load of 33 N, 30 rpm, temperature rises were a few degrees 
above RT during sliding in each direction 

 At a load of 100 N, 30 rpm,  ∆T is still small, but friction is much larger 
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Low-speed reciprocating 

33 N, 30 rpm 100 N, 30 rpm 



 At a load of 33 N, 240 rpm, ∆T is much larger than at 30 rpm 

 Repeatable fine details in ∆T from cycle to cycle due to variations in surface 
topography 
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Low-speed reciprocating 

33 N, 240 rpm 100 N, 240 rpm 



 ∆Ta as function of average speed * COF is graphed and behavior is less than linear 
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Low-speed reciprocating 



 A test was performed  at constant 120 RPM with increasing normal load to examine 
load dependence, for load from 4 N to 105 N 

 Small increase ∆T for large increase in load 
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Low-speed reciprocating 



 Instantaneous temperature rise at 9 N and 90 N are different in shape but not 
extremely different in magnitude 

 Friction waveforms are similar 

 Peak temperatures at center of stroke are similar 
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Low-speed reciprocating 

9 N, 120 rpm 90 N, 120 rpm 



 ∆Ta is weak function of load for 25:1 change in applied load 

– Bulk heating 

– Real area of contact reasonably proportional to load 
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Low-speed reciprocating 

 …what about dependence of ∆Ta  on coefficient of friction?  

 



 At steady 120 rpm, load was increased to induce scuffing  

 Large jump in µ and ∆T at 550 N, and load was ramped down to prevent specimen 
destruction 
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Low-speed reciprocating 



 Transition at 200 s can be used to test relationship between sliding parameters and 
∆T caused by change in µ while holding sliding speed and load relatively constant, 
showing ∆Ta  proportional to µ 
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Low-speed reciprocating 



 What effect do changes in lubricating fluid have on  ∆Ta ? 

 Unadditized PAO basestock oil was changed to fully formulated oil  by flooding the 
sliding contact 

– No obvious change in ∆Ta  or ∆Tp  or COF 

– F *V   Power   heat  
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Low-speed reciprocating 

Basestock              Fully formulated  



 “Block on Ring” test machine modified to enable “dynamic thermocouple” measurements 

 Air motor, preamplifier, and insulators needed to reduce electrical interference 

 Alumel™ ring, Chromel™ block 

 Rotating center voltage pickup 

 2,600 rpm  480 cm/s sliding speed 

 50,000 samples/s  typical 
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High speed rotation 

Pneumatic cylinder 

Encoder 

3-axis load cell 

Block 

Ring 

Air motor 



 Ni-base materials have poor tribological durability and are prone to rapid surface 
damage at high sliding speed 

– Polyalphalolefin (10) basestock oil for some tests 

– Run-to-scuff tests required 70W-90 gear oil 

– Controllable load/speed tests required SAE 10w30 fully formulated engine oil to prevent 
damage 
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High speed rotation 

Alloy #2 

Alloy #1 

DA 
SYSTEM 



 At high speeds surfaces may become  momentarily separated   

– Temperature  RT 

 Continuity detection added 
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High speed rotation 

Alloy #2 

Alloy #1 

DA 
SYSTEM 

V 

- 

+ 

Contact:  T  T  

Open:  negative temperature (masked in 
software) 
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High speed rotation 

 Polishing before testing 

120 grit dry 1200 grit in oil 
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High speed rotation 

 Light 13 load, smooth polished block and ring,  

13 N load 0-400-0 cm/s test 



 Average flash temperature vs peak flash temperature 

 Spectrum of  measured asperity temperatures 

– Wide range of actual asperity temperatures  (25-110 C) 

– Multiple asperity contacts, 1, 2…..,10, ??? 
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Reciprocating vs unidirectional 

Rotating – constant speed 

400 cm/s 



 Histogram gives picture of range of measured temperatures 
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Histograml 

400 cm/s 
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High speed rotation 

Run to scuff test using 50 N, SAE 70W90 

 How can coefficient of friction be varied while keeping speed and load constant? 
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High speed rotation 

∆Ta   ≠ ∆Tp  
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High speed rotation 

Detail of scuffing event 

No scuffing 

Initiation? 

Propagation? 



Polyalphaolefin 10 base stock 
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High speed rotation 

Initially rough surface Initially smooth surface 



 Rough compared to smooth 
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High speed rotation 



Summary 

 A thermoelectric method was used to measure “flash” temperature rise in a variety 
of sliding  conditions 

 The distribution of measured temperatures depended greatly on the sliding 
conditions 

 ∆Ta  was a strong function of sliding speed – nearly linear,  for the conditions 
studied 

 Surface contact heating was a weak function of load in all cases 

 Surface contact heating was strong function of  coefficient of friction  -  not linear  

 The type of oil appeared to have little direct influence on asperity temperatures, 
but only secondarily as lubricant influenced sliding regime: mild wear,  severe wear, 
or scuffing 

 High rate temperature measurement may offer a means, in parallel to low rate 
friction force monitoring, to understand initiation and propagation of a scuffing 
event 
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Block on Ring 

Questions?  
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